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1.

Test the following series for convergence.
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Determine the conditional convergence, absolute convergence or divergence of the following series.
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(i) Prove that Lim gl Tk =4
(i) Let S, (n=> 1) be the n-th partial sum of the series 1 -4 +4 -+ ++—++-. Show by
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induction that S, = >, ﬁ Use integral calculus to deduce that Z(—l)”*l% =1In(2).
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Prove that if > a.*> and X b.? are absolutely convergent, then X a, b, is also absolutely

convergent. [H|nt | an bn | < (@n® + ba?)/2 ]. Hence deduce that if Y a.? is absolutely convergent,

a
then so is n” :
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Find the radius of convergence of the following power series Z anX", where a, =
n=1
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Use the Cauchy Hadamard formula to show that the three series
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have the same radius of convergence.

Compare the regions of convergence of the three (real) power series (say if they are the same and

state the precise region of convergence).
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(i) Give an example of a power series Z anXx" with radius of convergence 1, which is divergent at

each point on the circle of convergence (| e., the boundary of the disk of convergence)..

(if) Give an example of a power series Z anX" with radius of convergence 1, which is divergent at
n=1

some points on the circle of convergence and divergent at other points.
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(iii) Give an example of a power series Y, a,x" with radius of convergence 1, which is convergent
n=1

at each point on the circle of convergence.
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