The function \(f \) is defined by

\[
f(x) = \begin{cases}
 \frac{2}{3}x^3 + \frac{1}{3}, & x > 1 \\
 x^2 \sin\left(\frac{\pi}{2x}\right), & -1 \leq x \leq 1 \text{ and } x \neq 0 \\
 x^3 - 1, & x < -1 \\
 0, & x = 0
\end{cases}
\]
(a) For $x < -1$, $f(x) = x^3 - 1 < -2$.
 Also, for $x < -1$, $x^3 - 1 < -2 \Leftrightarrow x < -1$.
 Thus f maps $(-\infty, -1)$ onto $(-\infty, -2)$.
 (Because for any $y < -2$, we can take $x = \sqrt[3]{y + 1}$ so that $f(x) = y$)

 Also, for $-1 \leq x \leq 1$, $-1 \leq f(x) \leq 1$.
 This is seen as follows.

For $-1 \leq x \leq 1$ and $x \neq 0$, $|f(x)| = \left| x^2 \sin \left(\frac{\pi}{2x} \right) \right| \leq x^2 \leq 1$.
Also we know $f(0) = 0$.
Thus $-1 \leq f(x) \leq 1$. Therefore, $f(1) = 1$ is the absolute maximum of f on $[-1, 1]$ and $f(-1) = -1$ is the absolute minimum of f on $[-1, 1]$.
Assuming that f is continuous on $[-1, 1]$ (as we shall show in part (d) below),
by the Intermediate Value Theorem)
f maps the interval $[-1,1]$ onto $[-1,1]$.

Finally for $x > 1$, $f(x) = \frac{2}{3}x^3 + \frac{1}{3} > 1$.
And for any $y > 1$, we can take
\[x = \sqrt[3]{\frac{3y - 1}{2}} > 1 \] so that $f(x) = y$.
Hence f maps $(1, \infty)$ onto $(1, \infty)$.

Hence the range of f is
$(-\infty, -2) \cup [-1, 1] \cup (1, \infty) = (-\infty, -2) \cup [-1, \infty)$.
(b) By part (a) \(\text{Range}(f) = (-\infty, -2) \cup [-1, \infty) \neq \mathbb{R} = \text{codomain}(f) \), therefore \(f \) is not surjective.

(c) (i) By part (a)

1 is in the image of \([-1, 1]\) under \(f \).

Thus, to find the preimage we need to solve the equation

\[
x^2 \sin\left(\frac{\pi}{2x}\right) = 1 \quad \text{for } x \text{ in } [-1, 1]-\{0\}.
\]

For \(x \neq 0 \) and \(-1 < x < 1\), \(\left|x^2 \sin\left(\frac{\pi}{2x}\right)\right| \leq x^2 < 1 \).

Since we know \(f(1) = 1 \), and \(f(-1) < 0 \), \(x = 1 \).
(ii) From part (a)
- 2 is not in the range of \(f \).
Thus, the solution of \(f(x) = -2 \) does not exist.
Therefore, there is no value of \(x \) such that \(f(x) = -2 \)

(d) When \(x < -1 \), \(f(x) = x^3 - 1 \), \(f \) is continuous on \((-\infty, -1) \).
When \(-1 < x < 1 \) and \(x \neq 0 \), \(f(x) = x^2 \sin\left(\frac{\pi}{2x}\right) \).
Since \(x^2 \sin\left(\frac{\pi}{2x}\right) \) is continuous on \((-1, 0) \) and on \((0, 1) \), \(f \) is continuous on the union of these two intervals.
When \(x > 1 \), \(f(x) \) is a polynomial function and so it is continuous for \(x > 1 \).
Thus it remains to check if \(f \) is continuous at \(x = -1, 0 \) or 1.
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 \sin\left(\frac{\pi}{2x}\right) = 1^2 \sin\left(\frac{\pi}{2}\right) = 1
\]
\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{2}{3}x^3 + \frac{1}{3} = \frac{2}{3} + \frac{1}{3} = 1 = f(1)
\]
Therefore, \(\lim_{x \to 1} f(x) = f(1) \) and so \(f \) is continuous at \(x = 1 \).

Now \(\lim_{x \to (-1)^-} f(x) = \lim_{x \to (-1)^-} x^3 - 1 = -2 \)
\[
\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} x^2 \sin\left(\frac{\pi}{2x}\right) = 1^2 \sin\left(-\frac{\pi}{2}\right) = -1
\]

Thus the left and the right limits of \(f \) at \(x = -2 \) are not the same and so \(f \) is not continuous at \(x = -1 \).
Now \(\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin\left(\frac{\pi}{2x}\right) = 0 \) by the Squeeze Theorem.

Since \(f(0) = 0 \), \(f \) is continuous at \(x = 0 \). Hence \(f \) is continuous at \(x \) for all \(x \neq -1 \).

(e) \(f \) is differentiable at \(x = 1 \). This is seen as follows.

\[
\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^-} \frac{x^2 \sin\left(\frac{\pi}{2x}\right) - 1}{x - 1} = \lim_{x \to 1^-} \frac{2x \sin\left(\frac{\pi}{2x}\right) - \frac{\pi}{2} \cos\left(\frac{\pi}{2x}\right)}{1} \quad \text{by L’ Hôpital’s Rule}
\]

\[= 2\]
\[
\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{2}{3}x^3 + \frac{1}{3} - 1
\]

\[
= \frac{2}{3} \lim_{x \to 1^+} \frac{x^3 - 1}{x - 1} = 2.
\]

Thus \(f \) is differentiable at \(x = 1 \) and \(f \ ' (1) = 2 \).

(f) Note that \(f \) is an odd function on the interval \([-1, 1]\), since \(f(-x) = x^2 \sin(-\pi/(2x)) = -x^2 \sin(\pi/(2x)) = -f(x) \).

\[
\int_{-1}^{0} f(x)dx = -\int_{1}^{0} f(-t)dt \quad \text{where} \quad t = -x
\]

\[
= \int_{1}^{0} f(t)dt = -\int_{0}^{1} f(t)dt
\]

Therefore,

\[
\int_{-1}^{1} f(x)dx = \int_{0}^{1} f(x)dx + \int_{-1}^{0} f(x)dx = 0.
\]
Question 2

(a) \(\lim_{x \to \infty} \frac{61x^7 + 2x^3 + 1}{907x^7 + 7x^3 + 5x^2 + 7} \)

\[
= \lim_{x \to \infty} \frac{61 + \frac{2}{x^4} + \frac{1}{x^7}}{907 + \frac{7}{x^4} + \frac{5}{x^5} + \frac{7}{x^7}} = \frac{61 + 0 + 0}{907 + 0 + 0 + 0} = \frac{61}{907}.
\]

(b) \(\lim_{x \to 0} \frac{\sqrt{7x^2 + 121} - 11}{14x^2} \)

\[
= \lim_{x \to 0} \frac{7x^2}{14x^2(\sqrt{7x^2 + 121} + 11)} \\
= \lim_{x \to 0} \frac{1}{2(\sqrt{7x^2 + 121} + 11)} = \frac{1}{44}.
\]
(c) \(\lim_{x \to \infty} \frac{x^5}{e^{x^2}} = \lim_{x \to \infty} \frac{5x^4}{2xe^{x^2}} \)

\[= \frac{5}{2} \lim_{x \to \infty} \frac{x^3}{e^{x^2}} = \frac{5}{2} \lim_{x \to \infty} \frac{3x^2}{2xe^{x^2}} \]

\[= \frac{15}{4} \lim_{x \to \infty} \frac{x}{e^{x^2}} = \frac{15}{4} \lim_{x \to \infty} \frac{1}{2xe^{x^2}} = 0 \]

by repeated use of L’Hôpital’s rule and \(\lim_{x \to \infty} 2xe^{x^2} = \infty \) so that the limit of the reciprocal function \(\lim_{x \to \infty} \frac{1}{2xe^{x^2}} \) is 0.
(d) \[\lim_{{x \to 0}} \frac{\sin(\tan(x))}{\tan(\sin(x))} \]

\[= \lim_{{x \to 0}} \frac{\cos(\tan(x)) \sec^2(x)}{\sec^2(\sin(x)) \cos(x)} \quad \text{by L’ Hôpital’s rule} \]

\[= \frac{\cos(\tan(0)) \sec^2(0)}{\sec^2(\sin(0)) \cos(0)} = 1 \]
(e) Let \(y = (e^{x^3} + 3x^2)^{(1/x^2)} \).

Then \(\ln(y) = \frac{1}{x^2} \ln(e^{x^3} + 3x^2) \).

Now \(\lim_{x \to 0} \ln(y) = \lim_{x \to 0} \frac{\ln(e^{x^3} + 3x^2)}{x^2} \)

\[= \lim_{x \to 0} \frac{3x^2 e^{x^3} + 6x}{2x(e^{x^3} + 3x^2)} \]

\[= \frac{3}{2} \frac{0 + 2}{1 + 0} = 3 \]

Therefore, \(\lim_{x \to 0} y = \lim_{x \to 0} e^{\ln(y)} = e^{\lim_{x \to 0} \ln(y)} = e^3 \)
Question 3

(a) \[\int \frac{dx}{(x^2 + 2)(x^2 + 3)} = \int \left(\frac{1}{x^2 + 2} - \frac{1}{x^2 + 3} \right) dx \]

\[= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) - \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right) + C \]
(b) \[\int \sin^{-1}(4x) \, dx = x \sin^{-1}(4x) - \int 4x \frac{1}{\sqrt{1 - 16x^2}} \, dx \]
by integration by parts

\[= x \sin^{-1}(4x) + \frac{1}{8} \int \frac{-32x}{\sqrt{1 - 16x^2}} \, dx \]

\[= x \sin^{-1}(4x) + \frac{1}{4} \sqrt{1 - 16x^2} + C \]
by change of variable or substitution
using e.g. \(u = \sqrt{(1 - 16x^2)} \)
(c) \[\int e^{2x} \sin(5x)\,dx = \frac{1}{2} e^{2x} \sin(5x) - \frac{1}{2} \int e^{2x} 5 \cos(5x)\,dx\]

\[= \frac{1}{2} e^{2x} \sin(5x) - \frac{5}{2} \left[\frac{1}{2} e^{2x} \cos(5x) + \frac{1}{2} \int e^{2x} 5 \sin(5x)\,dx \right]\]

\[= \frac{1}{2} e^{2x} \sin(5x) - \frac{5}{4} e^{2x} \cos(5x) - \frac{25}{4} \int e^{2x} \sin(5x)\,dx\]

by integration by parts.

Therefore,

\[\frac{29}{4} \int e^{2x} \sin(5x)\,dx = \frac{1}{2} e^{2x} \sin(5x) - \frac{5}{4} e^{2x} \cos(5x) + C\]

Thus

\[\int e^{2x} \sin(5x)\,dx = \frac{2}{29} e^{2x} \sin(5x) - \frac{5}{29} e^{2x} \cos(5x) + C'.\]
Therefore,

\[
\int_{0}^{\frac{\pi}{5}} e^{2x} \sin(5x) \, dx = \frac{1}{29} \left[2e^{2x} \sin(5x) - 5e^{2x} \cos(5x) \right]_{0}^{\frac{\pi}{5}}
\]

\[
= \frac{1}{29} \left[5e^{0} \cos(0) - 5e^{\frac{2\pi}{5}} \cos(\pi) \right]
\]

\[
= \frac{5}{29} \left(1 + e^{\frac{2\pi}{5}} \right).
\]
\[(d) \quad \int \frac{x + 3}{x^2 + 2x + 4} \, dx = \int \left(\frac{1}{2} \frac{2x + 2}{x^2 + 2x + 4} + \frac{2}{x^2 + 2x + 4} \right) \, dx \]

\[= \frac{1}{2} \ln(x^2 + 2x + 4) + 2 \int \frac{1}{(x + 1)^2 + 3} \, dx \]

\[= \frac{1}{2} \ln(x^2 + 2x + 4) + \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{x+1}{\sqrt{3}}\right) + C \]

Therefore,

\[\int_0^2 \frac{x + 3}{x^2 + 2x + 4} \, dx = \left[\frac{1}{2} \ln(x^2 + 2x + 4) + \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{x+1}{\sqrt{3}}\right) \right]_0^2 \]

\[= \frac{1}{2}((\ln(12) - \ln(4)) + \frac{2}{\sqrt{3}}(\tan^{-1}(\sqrt{3}) - \tan^{-1}(\frac{1}{\sqrt{3}})) \]

\[= \frac{1}{2} \ln(3) + \frac{2}{\sqrt{3}}\left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \frac{1}{2} \ln(3) + \frac{\pi}{3\sqrt{3}} \]
(a) Let \(f(x) = 3x - 2 \). First note that
\[
|f(x) - 1| = |3x - 2 - 1| = 3|x - 1|.
\]
Therefore,
\[
given \text{ any } \varepsilon > 0, \text{ take } \delta = \varepsilon / 3
\]
Thus,
\[
0 < |x - 1| < \delta \Rightarrow |f(x) - 1| = 3|x - 1| < 3\delta = \varepsilon.
\]
Therefore, by the definition of limit,
\[
\lim_{x \to 1} f(x) = 1.
\]
(b) First note that
\(f \) is differentiable at \(x \) for \(x \) in \((-\infty, -\pi)\) or \((\pi, \infty)\)
since on these intervals the function is the same
as \(\sin(x) \) and \(\sin(x) \) is differentiable on these
intervals.

Now for \(x \) such that \(-\pi < x < \pi\), \(f(x) \) is given
by a polynomial and any polynomial is
differentiable on the interval \((-\pi, \pi)\).

Then a necessary condition for \(f \) to be
differentiable at \(\pi \) is that \(f \) be continuous at \(\pi \).

That is, \(\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x) = f(\pi) \).
Now \(\lim_{x \to \pi} f(x) = \lim_{x \to \pi} ax^3 + bx = a\pi^3 + b\pi = f(\pi) \) and \(\lim_{x \to \pi^+} f(x) = \lim_{x \to \pi^+} \sin(x) = \sin(\pi) = 0. \)

And so our first condition is

\[a\pi^2 + b = 0 \quad \text{------------------ (1)} \]

Since we know the derivative of \(\sin(x) \) is \(\cos(x) \), that is

\[
\lim_{y \to x} \frac{\sin(y) - \sin(x)}{y - x} = \cos(x),
\]

\[
\lim_{x \to \pi^+} \frac{f(x) - f(\pi)}{x - \pi} = \lim_{x \to \pi^+} \frac{\sin(x) - 0}{x - \pi}
\]

\[
= \lim_{x \to \pi} \frac{\sin(x) - \sin(\pi)}{x - \pi} = \cos(\pi) = -1.
\]
Similarly,
\[
\lim_{x \to \pi^-} \frac{f(x) - f(\pi)}{x - \pi} = \lim_{x \to \pi^-} \frac{ax^3 + bx - (a\pi^3 + b\pi)}{x - \pi} = 3a\pi^2 + b.
\]
Therefore, in addition to equation (1), for differentiability at \(\pi\), we must have
\[
3a\pi^2 + b = -1 \quad \text{------------------ (2)}
\]
Solving (1) and (2) gives \(b = \frac{1}{2}\) and \(a = -\frac{1}{2\pi^2}\).

For differentiability at \(-\pi\), we get the same equations (1) and (2) above. Thus the same values for \(a\) and \(b\) above will guarantee differentiability at \(-\pi\) too.
(c) Let \(f(x) = 2x^3 + 3x + 1 - 3 \sin(x) \cos(x) \)
\[= 2x^3 + 3x + 1 - \frac{3}{2} \sin(2x). \]
Then \(f'(x) = 6x^2 + 3 - 3 \cos(2x) \)
\[= 6x^2 + 3(1 - \cos^2(x) + \sin^2(x)) \]
\[= 6(x^2 + \sin^2(x)). \]
Therefore, \(f'(x) > 0 \) for \(x \neq 0. \)

Since \(f \) is continuous on \(\mathbb{R}, \) \(f \) is continuous at \(x = 0. \)
Thus \(f \) is increasing on \((-\infty, 0] \) and on \([0, \infty) \) and so it is increasing on \(\mathbb{R}. \) Therefore, \(f \) is injective.
• Now $f(0) = 1 > 0$ and $f(-\pi) = -2\pi^2 - 3\pi + 1 < 0$.
• Therefore, by the Intermediate Value Theorem, there exists a point c in \mathbb{R} such that $f(c) = 0$.
• That is, f has a root in \mathbb{R}.
• Since f is injective, it has exactly one real root.
Question 5

Observe that

\[
f(x) = \begin{cases}
\frac{2x|x|}{1+x^2}, & x < 1 \\
\frac{1}{x}, & x \geq 1
\end{cases}
\]

We note that

1. \(f \) is continuous on \((1, \infty)\) because \(f \) is a rational function on \((1, \infty)\).
2. \(f \) is continuous on \((-\infty, 1)\) because \(f \) is a product of a rational function and \(|x| \) and \(|x| \) is a continuous function.
Now \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x} = 1 = f(1) \) and
\(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{2x|x|}{1 + x^2} = 1. \)

Therefore, \(\lim_{x \to 1} f(x) = f(1) \) and so \(f \) is continuous at \(x = 1. \)
Thus \(f \) is continuous on \(\mathbb{R}. \)

Then
\[
f'(x) = \begin{cases}
-\frac{4x}{(1 + x^2)^2}, & x < 0 \\
\frac{4x}{(1 + x^2)^2}, & 0 < x < 1 \\
-\frac{1}{x^2}, & x > 1
\end{cases}
\] \(\quad \text{------- (1)} \)
\[f''(x) = \begin{cases}
4 \frac{(3x^2 - 1)}{(1 + x^2)^3}, & x < 0 \\
-4 \frac{(3x^2 - 1)}{(1 + x^2)^3}, & 0 < x < 1 \\
\frac{2}{x^3}, & x > 1
\end{cases} \]
(a) For \(x < 0 \), \(-4x > 0\) and so from (1) \[
\frac{-4x}{(1 + x^2)^2} > 0 \quad \text{for } x \in (-\infty, 0)
\]
since \((1 + x^2) > 0\).

Thus \(f\) is increasing on the interval \((-\infty, 0]\) since \(f\) is continuous at \(x = 0\).

Now for \(x \) in \((0, 1)\) \(f'(x) = \frac{4x}{(1 + x^2)^2} > 0\).

Therefore, \(f\) is increasing on \([0, 1]\) since \(f\) is continuous at \(x = 0\) and at \(x = 1\).
Thus \(f\) is increasing on the interval \((-\infty, 1]\).
For \(x > 1 \), \(f'(x) = -\frac{1}{x^2} < 0 \).

Thus \(f \) is decreasing on the interval \([1, \infty) \) since \(f \) is continuous at \(x = 1 \).

(b) Now \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x} = 0 \)

and so the line \(y = 0 \) is a horizontal asymptote of the graph of \(f \).

Next we check the following limit.

\[
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -\frac{2x^2}{1 + x^2} = \lim_{x \to -\infty} -\frac{2}{1 + \frac{1}{x^2}} = -2
\]

Therefore, the line \(y = -2 \) is another horizontal asymptote of the graph of \(f \).
(c) When \(x < -\frac{1}{\sqrt{3}} \), from (2),

\[
 f''(x) = 12 \frac{(x^2 - \frac{1}{3})}{(1 + x^2)^3} > 0 \text{ since } (x^2 - \frac{1}{3}) > 0.
\]

Hence the graph of \(f \) is concave upward on the interval \((-\infty, -\frac{1}{\sqrt{3}})\).

Also from (2), when \(-\frac{1}{\sqrt{3}} < x < 0 \),

\[
 f''(x) = 12 \frac{(x^2 - \frac{1}{3})}{(1 + x^2)^3} < 0.
\]

Therefore, the graph of \(f \) is concave downward on the interval \((-\frac{1}{\sqrt{3}}, 0)\).
Again from (2), for \(0 < x < \frac{1}{\sqrt{3}} (< 1) \),

\[
f''(x) = -12 \frac{(x^2 - \frac{1}{3})}{(1 + x^2)^3} > 0 \text{ since } (x^2 - \frac{1}{3}) < 0.
\]

Therefore, the graph of \(f \) is concave upward on \((0, \frac{1}{\sqrt{3}})\).

For \(\frac{1}{\sqrt{3}} < x < 1 \), \(f''(x) = -12 \frac{(x^2 - \frac{1}{3})}{(1 + x^2)^3} < 0 \)

and therefore the graph of \(f \) is concave downward on \((\frac{1}{\sqrt{3}}, 1)\).

Finally for \(x > 1 \), \(f''(x) = \frac{2}{x^3} > 0 \) and so the graph of \(f \) is concave upward on \((1, \infty)\).
(d) Since from part (a) \(f \) is increasing on \((-\infty, 1]\) and decreasing on \([1, \infty)\), \(f \) has a relative maximum value at \(x = 1 \).

- Indeed the relative maximum value is \(f(1) = 1 \).

Since \(f \) is increasing on \((-\infty, 1]\), \(f \) has no relative minimum in \((-\infty, 1]\).

- Likewise since \(f \) is decreasing on \([1, \infty)\), \(f \) has no relative minimum value in \([1, \infty)\).

Therefore \(f \) has no relative minimum value.
(e)
From part (c), there are changes of concavity before and after the following points in the graph:

\((-\frac{1}{\sqrt{3}}, f(-\frac{1}{\sqrt{3}})) = (-\frac{1}{\sqrt{3}}, -\frac{1}{2}))\),

\((0, f(0)) = (0, 0),\)

\((\frac{1}{\sqrt{3}}, f(\frac{1}{\sqrt{3}})) = (\frac{1}{\sqrt{3}}, \frac{1}{2}))\)

and \((1, f(1)) = (1, 1)\).

Therefore, these are the points of inflection.
(f) The graph of \(f \) (not drawn to scale)
(a) \(g(x) = \int_{-x}^{x^3} \frac{1}{1 + \sin^2(2t) + t^2} \, dt \)

\[= \int_{0}^{x^3} \frac{1}{1 + \sin^2(2t) + t^2} \, dt + \int_{-x}^{0} \frac{1}{1 + \sin^2(2t) + t^2} \, dt\]

\[= \int_{0}^{x^3} \frac{1}{1 + \sin^2(2t) + t^2} \, dt - \int_{0}^{x} \frac{1}{1 + \sin^2(2t) + t^2} \, dt\]

\[= F(x^3) - F(-x)\]

where \(F(x) = \int_{0}^{x} \frac{1}{1 + \sin^2(2t) + t^2} \, dt \)
Therefore,
\[g'(x) = F'(x^3) \cdot 3x^2 - F'(-x) \cdot (-1) \]
by the Chain Rule

\[= \frac{3x^2}{1 + \sin^2(2x^3) + x^6} + \frac{1}{1 + \sin^2(-2x) + x^2} \]
by the FTC
(b) (i)

Since \(k(x) = \int_{1}^{x} \frac{1}{\sqrt{1 + t^4}} \, dt \), by the FTC,

\[
k'(x) = \frac{1}{\sqrt{1 + x^4}} > 0 \quad \text{since} \quad 1 + x^4 > 0.
\]

Therefore, \(k \) is increasing on the whole of \(\mathbb{R} \).
Thus \(k \) is injective.
(ii) \((k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))}\).

- Need to know the value of \(k^{-1}(0)\).

\[k^{-1}(0) = x \iff k(x) = 0 \iff \int_1^x \frac{1}{\sqrt{1 + t^4}} dt = 0\]

Since \(k(1) = \int_1^1 \frac{1}{\sqrt{1 + t^4}} dt = 0\) and \(k\) is injective, \(x = 1\).

Therefore,

\[(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))} = \frac{1}{k'(1)} = \frac{1}{\sqrt{2}} = \sqrt{2}\]
Let \(f(x) = \int_{a}^{x} h(t) dt + \int_{h(a)}^{h(x)} h^{-1}(s) ds - xh(x) \)

- We want to show that this is a constant function.
- At this point, it is reasonable to make some assumption that allows us to proceed to show that this is true under this assumption. We then assume that \(h \) is differentiable. This is to make sure that the function \(f \) is differentiable.
- Notice that \(f \) is continuous on \([a, b]\).
With this assumption, by the Fundamental Theorem of Calculus, f is indeed differentiable and

$$f'(x) = h(x) + h^{-1}(h(x))h'(x) - (h(x) + xh'(x))$$

$$= h(x) + x h'(x) - h(x) - x h'(x) = 0$$

Therefore,

$$f(x) = C$$ for some constant C.

Thus $C = f(a) = -ah(a)$.

Hence

$$\int_{a}^{x} h(t)dt = xh(x) - ah(a) - \int_{h(a)}^{h(x)} h^{-1}(s)ds$$

In particular

$$\int_{a}^{b} h(t)dt = bh(b) - ah(a) - \int_{h(a)}^{h(b)} h^{-1}(s)ds$$
The solution to this part without assuming the differentiability of h is given at the end of the page
(ii) Let \(h(x) = \sqrt{1 + (x - 1)^{\frac{1}{3}}} \) for \(x \) in \([0,1]\).

\[h(x) = y \quad \text{if and only if} \]

\[1 + (x - 1)^{\frac{1}{3}} = y^2 \iff (x - 1)^{\frac{1}{3}} = y^2 - 1 \quad \text{so that} \]

\[x = (y^2 - 1)^3 + 1 = y^6 - 3y^4 + 3y^2 \]

Therefore \(h^{-1}(y) = y^6 - 3y^4 + 3y^2 \)

Now \(h(0) = 0 \) and \(h(1) = 1 \).

• Before we use part (i), note that in part (i) we only require that \(h \) be differentiable on \((a, b)\).
Hence by part (i),

\[\int_0^1 \sqrt{1 + (x - 1)^{\frac{1}{3}}} \, dx = h(1) - \int_0^1 (y^6 - 3y^4 + 3y^2) \, dy \]

\[= 1 - \left[\frac{1}{7}y^7 - \frac{3}{5}y^5 + y^3 \right]_0^1 = 1 - (1 + \frac{1}{7} - \frac{3}{5}) = \frac{16}{35}. \]
Or use substitution $u = 1 + (x - 1)^{\frac{1}{3}}$.

Then $x = u^3 - 3u^2 + 3u$.

$$\int_0^1 \sqrt{1 + (x - 1)^{\frac{1}{3}}} \, dx = \int_0^1 (3u^\frac{5}{2} - 6u^\frac{3}{2} + 3u^\frac{1}{2}) \, du$$

$$= 3 \left[\frac{2}{7}u^\frac{7}{2} - \frac{4}{5}u^\frac{5}{2} + \frac{2}{3}u^\frac{3}{2} \right]_0^1$$

$$= \frac{6}{7} - \frac{12}{5} + 2 = \frac{16}{35}$$