Closed and bounded sets, Heine-Borel Theorem, Bolzano-Weierstrass Theorem, Uniform Continuity and Riemann Integrability

Ng Tze Beng

The aim of this note is to establish that any function that is continuously defined on a closed and bounded interval is also uniformly continuous. This is actually a consequence of the notion of compactness. We shall give explanation of some of the less familiar concepts involved.

Definition 1. A metric space \((M, d)\) is a set \(M\) together with a metric function \(d : M \times M \to \mathbb{R}\) satisfying the following: For all \(x, y \) and \(z \) in \(M\),
1. \(d (x, y) \geq 0\),
2. \(d (x, y) = 0\) if and only if \(x = y\),
3. \(d (x, y) = d (y, x)\) and
4. \(d (x, y) \leq d (x, z) + d (z, y)\).

Then for each \(r > 0\), and each \(x\) in \(M\), the open balls \(B(x, r) = \{ y \in M : d(y, x) < r \}\) are crucial in defining a new object. Any subset of \(M\) is said to be open if and only if it is a union of a family of open balls or if it is empty. We can easily show that this collection of all open sets form a topology on \(M\), called the metric topology in the following sense.

Definition 2. A topology on a set \(X\) is a family \(\mathcal{T}\) of subsets of \(X\) satisfying
1. \(\emptyset, X \in \mathcal{T}\),
2. If \(\mathcal{S}\) is any subfamily of \(\mathcal{T}\), then the union \(\bigcup \mathcal{S} = \bigcup \{ U : U \in \mathcal{S} \} \in \mathcal{T}\),
3. If \(U_1, U_2, \ldots, U_n \in \mathcal{T}\), then the finite intersection \(U_1 \cap U_2 \cap \ldots \cap U_n \in \mathcal{T}\).

Example. 1. \((\mathbb{R}, d)\) with \(d(x, y) = |x - y|\).
2. For integer \(n > 1\), \((\mathbb{R}^n, d)\) with the Euclidean metric
\[d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}\]

Definition 3. An open cover of a set \(A\) in \(\mathbb{R}\) (topological space), is a family \(\mathcal{U}\) of open intervals (open sets) such that the union \(\bigcup \mathcal{U} = \bigcup \{ U : U \in \mathcal{U} \} \supseteq A\).

Example. For each \(x\) in the closed interval \([a, b]\) and for each natural number \(n\), let \(B(x, 1/n) = (x - 1/n, x + 1/n)\). Then \(B(x, 1/n)\) is open. Then the family or collection of open sets \(\mathcal{U} = \{ B(x, 1/2) : x \in [a, b] \}\) is an open cover for \([a, b]\). This collection is most effective when we can select a finite subset of \(\mathcal{U}\) which also covers \([a, b]\). It is indeed the case that we can do this but not for any other subsets of \(\mathbb{R}\) and for any open cover. Hence the following definition.

Definition 4. A subspace \(A\) of a topological space \(X\) is compact, if and only if, any open cover \(\mathcal{C}\) of \(A\) have a finite subcover, that is, a finite subfamily (subset) \(\mathcal{B}\) of \(\mathcal{C}\) such that \(A \subseteq \bigcup \{ U : U \in \mathcal{B} \}\).
A subset \(A \) of \(\mathbb{R} \) is compact if and only if any open cover \(\mathcal{C} \) of \(A \) by open intervals has a finite subcover, that is a finite subfamily (subset) \(\mathcal{E} \) of \(\mathcal{C} \) such that \(A \subseteq \bigcup \{ U : U \in \mathcal{E} \} \).

Example.

1. \(\mathbb{R} \) (with usual metric topology) is not compact. Take for example \(\mathcal{C} = \{(n, n+2) : n \in \mathbb{Z} \} \). Then \(\mathcal{C} \) covers \(\mathbb{R} \) but does not have a finite subcover.

2. \(A = \{1, 1/2, 1/3, 1/n, \ldots \} \subseteq \mathbb{R} \) is not compact. Take \(\mathcal{C} = \{(1/(n+1), 1/(n-1)) : n \in \mathbb{Z} \} \cup \{(1/2,3/2)\}. \mathcal{C} \) covers \(A \) but does not have a finite subcover.

3. \(A = \{0, 1, 1/2, 1/3, 1/n, \ldots \} \subseteq \mathbb{R} \) is compact.

Proof. Suppose \(\mathcal{C} \) is an open cover covering \(A \). Then 0 \(\in \) \(U \) for some \(U \) in \(\mathcal{C} \).

Then since \(1/n \) converges to 0 as \(n \) tends to infinity, there exists an integer \(N \) such that for all \(n > N, 1/n \in U \). Now for \(n = 1, \ldots, N, 1/n \in U \). Hence \(\{U_1, \ldots, U_N, U\} \) is a finite subfamily that covers \(A \) too.

The next notion is the notion of boundedness. A subset \(A \) of a metric space \((M, d)\) is said to be bounded, if and only if, there exists a real positive number \(k \) such that \(d(x, y) < k \) for all \(x, y \) in \(A \).

Theorem 5 (Heine-Borel). A subset \(A \) of \(\mathbb{R} \) is compact if and only if \(A \) is closed and bounded.

Before we proceed with the proof. The following results will contribute to it and are important and useful on their own merits

Theorem 6. A compact subset \(A \) of a metric space \((M, d)\) is bounded.

Proof. We are going to use an open cover of \(A \) by open balls. A typical open ball centred at \(x \) in \(A \) and of radius \(\delta > 0 \) is the set \(B(x, \delta) = \{ y \in M : d(y, x) < \delta \} \). For each \(a \) in \(A \), let \(U(a) = B(a, 1) \) be the unit ball centred at \(a \). Then \(\mathcal{C} = \{U(a) : a \in A\} \) is an open cover for \(A \). Since \(A \) is compact, \(\mathcal{C} \) has a finite subcover, say \(\{U(a_i) : i = 1, \ldots, n\} \). Let \(k = \max \{d(a_i, a_j) : 1 \leq i, j \leq n\} \). Therefore, for any \(x, y \) in \(A \), \(x \in a_i \) and \(y \in a_j \) for some \(1 \leq i, j \leq n \), \(d(x, y) \leq d(x, a_i) + d(a_i, a_j) + d(a_j, y) < 2 + k \) and so \(A \) is bounded.

Theorem 7. Any compact subset \(A \) of a metric (Hausdorff) space is closed.

Proof. The proof uses the fact that any two distinct points \(x, y \) in a metric space can be separated in the sense that there are two disjoint open sets \(U \) and \(V \) with \(x \in U \) and \(y \in V \). We can take for instance, \(U = B(x, d(x, y)/2) \) and \(V = B(y, d(x, y)/2) \). This is the concept of a Hausdorff space. Let us fix an element \(y \) not in \(A \). Then for each \(a \) in \(A \), we have an open set \(U(a) \) and an open set \(V(a) \) such that \(a \in U(a), y \in U(a) \) and \(U(a) \cap V(a) = \emptyset \). Then \(\mathcal{C} = \{U(a) : a \in A\} \) is an open cover for \(A \). Since \(A \) is compact \(\mathcal{C} \) has a finite subcover, say \(\{U(a_i) : i = 1, \ldots, n\} \). Then if we let \(U = \bigcup \{U(a_i) : i = 1, \ldots, n\} \) and \(V = \bigcap \{V(a) : i = 1, \ldots, n\} \). Then \(U \) is a finite union of open sets and is therefore open and \(V \) is a finite intersection of open sets and is also open. Also \(A \subseteq U \) and \(U \cap V = \emptyset \). This is because \(U \cap V \subseteq \bigcup \{U(a_i) \cap V : i = 1, \ldots, n\} \subseteq \bigcup \)
Proof.

\{U(a) \cap V(a) : i = 1, \ldots, n\} = \emptyset. Hence \(V\) is an open set containing \(y\) and \(V \subseteq\) complement of \(A\) since \(V \cap A \subseteq U \cap V = \emptyset\). Hence each point \(y\) in the complement of \(A\) has an open set contained entirely in the complement of \(A\), therefore the complement of \(A\) is a union of open sets and so is open. Therefore, \(A\) is closed. This completes the proof.

Proof of Theorem 5.

(⇒) Suppose \(A\) is a compact subset of \(\mathbb{R}\). Then by Theorem 6, \(A\) is bounded and is closed by Theorem 7.

(⇐) Suppose \(A\) is a closed and bounded subset of \(\mathbb{R}\). Then \(A \subseteq [a, b]\) for some closed and bounded interval \([a, b]\). If we can show that \([a, b]\) is compact, then \(A\) being a closed subspace of a compact space is therefore compact. (This is because any open cover for \(A\) together with the complement of \(A\) constitute an open cover for \([a, b]\) and if \([a, b]\) is compact there will be a finite subcover for \(A\).) Now let \(C\) be open cover for \([a, b]\). Define \(c = \sup \{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\). Obviously the set \(\{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\) is not empty since \(a\) belongs to it and is clearly bounded above by \(b\). Therefore, by the completeness property of \(\mathbb{R}\), \(c\) exists. Then \(c > a\). Why? \(a\) open set \(U\) in \(C\) since \(C\) is an open cover for \([a, b]\). Therefore, there exists a \(\delta > 0\) such that \((a - \delta, a + \delta) \subseteq U\). Thus for any \(a < y < a + \delta\), \([a, y] \subseteq U\) and so \(y \in \{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\). Therefore, by the definition of supremum \(c \geq y > a\).

We shall show next that \(c = b\). Now we have \(a < c \leq b\). Thus there exists an open set \(U\) in \(C\) such that \(c \in \text{open set } U\). Then there exists \(\delta > 0\) such that \((c - \delta, c + \delta) \subseteq U\). Take any \(d\) such that \(c - \delta < d < c\). Then \([d, c] \subseteq U\). Now since \(d < c\), by the definition of supremum, there exists a point \(z\) in \(\{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\) such that \(d < z \leq c\). Hence there is a finite subfamily of \(C\) covering \([a, z]\) and since \([a, z] \cup [d, c] = [a, c]\) and \([d, c] \subseteq U\), this subfamily together with \(U\) constitute a finite subfamily covering \([a, c]\). Hence, \(c \in \{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\) and \(U \subseteq C\). This subfamily and \(U\) constitute a finite subfamily covering \([a, e]\). Thus \(e \in \{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\). Therefore, \(c = \sup \{ x \in [a, b] : \text{a finite subfamily of } C \text{ covers } [a, x]\}\). This completes the proof.

Theorem 8 (Bolzano-Weierstrass). Any bounded sequence in \(\mathbb{R}\) has a convergent subsequence.

We shall give a proof of this theorem that can be adapted to a proof for a bounded sequence in \(\mathbb{R}^n\).

Proof. By the Heine-Borel Theorem (Theorem 5), a bounded sequence \(\{a_n\}\) in \(\mathbb{R}\) lies inside a compact set, a large closed interval \([c, d]\). Let us use the following
notation for the sequence. Consider \(\{a_n\} \) as the image of a function \(a : \mathbb{N} \rightarrow \mathbb{R} \), where \(a(n) = a_n \).

If the image \(A = a(\mathbb{N}) \) is finite, then there must exist an element \(y \) in \(a(\mathbb{N}) \) such that \(a^{-1}(y) \) is infinite. Therefore \(\{a_j : j \in a^{-1}(y)\} \) is a convergent constant subsequence. We now consider the case \(A \) is infinite. Then of course \(A \) is contained in \([c, d]\).

Consider now the set of accumulation point \(A' \) of \(A \) in \(\mathbb{R} \). A point \(x \) in \(\mathbb{R} \), is an accumulation point of \(A \) if any open set containing \(x \) contains a point of \(A \) distinct from \(x \). Claim that \(A' \neq \emptyset \). Suppose \(A' = \emptyset \). That means each point \(x \) in \([c, d]\) has an open set \(U_x \) such that \(U_x \cap A \) is finite. Then the family of open sets \(\{U_x : x \in [c, d]\} \) covers \([c, d]\). Since \([c, d]\) is compact by the Heine-Borel Theorem, this family has a finite sub family \(\{U_i, i = 1, \ldots, n\} \) such that \([c, d]\) is a union of finite set and so is finite. Hence \(A \) being a subset of a finite set must be finite. We have thus arrived at a contradiction since we have started with an infinite \(A \). Take a point \(x \) in \(A' \). Then we shall construct a sequence \(\{x_i\} \) in \(A \) such that \(x_i \neq x_j \) for \(i \neq j \) and \(\{x_j\} \) converges to \(x \) as \(j \) tends to infinity. A consequence of this is that \(x \) is in \([c, d]\). Take \(x_1 \) in \(B(x, 1) \) such that \(x_1 \neq x \) and so \(d(x_1, x) > 0 \). This point \(x_1 \) exists by definition of accumulation point. As we shrink the Ball \(B(x, 1/n) \), we shall exclude the point \(x_1 \). For instance there exists an integer \(n_2 \) such that \(1/n_2 < d(x_1, x) \), then by virtue of \(x \) being an accumulation point of \(A \), there exists \(x_2 \) in \(B(x, 1/n_2) \) such that \(x_2 \neq x \) and so \(d(x_2, x) > 0 \). Obviously \(x_2 \neq x_1 \) for otherwise if \(x_2 = x_1 \), then \(d(x_2, x_1) = 0 \) and we have \(d(x_1, x) \leq d(x_2, x_1) + d(x_2, x) < 0 + 1/n_2 = 1/n_2 \) contradicting \(1/n_2 < d(x_1, x) \). In this way, there exists \(n_3 \) such that \(1/n_3 < d(x_2, x) \), \(x_2, x_1 \in B(x, 1/n_3) \) and there exists \(x_3 \) in \(B(x, 1/n_3) \) such that \(x_3 \neq x \). So inductively, we find integers \(l < n_2 < n_3 \) ... and points \(x_1, x_2, x_3, \ldots \) such that \(x_j \in B(x, 1/n_j), x_i \neq x_j \) for \(i \neq j \). Then obviously \(\{x_j\} \) converges to \(x \) as \(j \) tends to infinity since for any open set \(U \) containing \(x \) there exists an integer \(J \) such that \(x \in B(x, 1/n_J) \subseteq U \). Therefore, for all \(j > J \), \(x_j \in B(x, 1/n_J) \subseteq B(x, 1/n_J) \subseteq U \).

Now based on this sequence we are going to construct a subsequence of \(\{a_n\} \) converging to \(x \). Start with \(x_1 \), consider \(a^{-1}(x_1) \). Choose \(i_1 \) in \(a^{-1}(x_1) \). Then \(a(i_1) = x_1 \). Next observe that since not all \(a^{-1}(x_j) \) for \(j > 1 \) can be bounded above by \(i_1 \) because otherwise \(a^{-1}(\{x_j : j > 1\}) \) would be finite which implies that \(\{x_j : j > 1\} \) is finite contradicting that \(\{x_j : j > 1\} \) is infinite since the sequence \(\{x_j\} \) is a sequence of distinct terms. Thus there is a \(j > 1 \) such that \(a^{-1}(x_{j_2}) \) is not bounded by \(i_1 \). There exists \(i_2 \) in \(a^{-1}(x_{j_2}) \) such that \(i_2 > i_1 \) and \(a(i_2) = x_{j_2} \). Next not all \(a^{-1}(x_{j}) \) for \(j > j_2 \) can be bounded above by \(i_2 \). So there exists \(j_3 > j_2 \) such that \(a^{-1}(x_{j_3}) \) is not bounded by \(i_2 \). So there exists \(i_3 \) in \(a^{-1}(x_{j_3}) \) such that \(i_3 > i_2 \) and \(a(i_3) = x_{j_3} \). In this way we obtain a subsequence \(\{x_{j_n} : n = 1, \ldots, \infty\} \) of \(\{x_j\} \) and this subsequence is equal to the subsequence \(\{a_{i_n} : n = 1, \ldots, \infty\} \) of \(\{a_n\} \). That means \(a_{i_n} = x_{j_n} \) for \(n = 1, 2, \ldots \). Since \(\{x_j\} \) converges to \(x \), any subsequence of it also converges to \(x \). Hence, \(\{x_{j_n}\} \) converges to \(x \). Therefore, \(\{a_{i_n}\} \) also converges to \(x \). This completes the proof.

Remark. The Bolzano-Weierstrass Theorem for bounded sequence in \(\mathbb{R}^n \) follows the same proof above by replacing \(\mathbb{R} \) by \(\mathbb{R}^n \), \([c, d]\) by a large closed disk or ball and using the Heine-Borel Theorem for \(\mathbb{R}^n \).

2. We can use the Bolzano-Weierstrass Theorem to prove the Extreme Value Theorem.

© Ng Tze Beng 2001
A consequence of the compactness of the domain on continuity.

Uniform Continuity

We shall stick to the one variable case. Let D be a subset of \mathbb{R}.

Definition 9. A function $f : D \to \mathbb{R}$ is said to be uniformly continuous if given $\varepsilon > 0$, there exists a $\delta > 0$ such that for any $x, y \in D$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$.

The next result is a consequence of the closed and bounded interval being a compact set of \mathbb{R}.

Notice that uniform continuity implies continuity.

Theorem 9. If the function $f : [a, b] \to \mathbb{R}$ is continuous, then it is also uniformly continuous.

Proof. The most important result we use here is the compactness of $[a, b]$. That means we are going to produce a family of open cover of $[a, b]$. Since f is continuous at each x in $[a, b]$, given $\varepsilon > 0$, there exists a $\delta(x) > 0$ (δ here may depend on x) such that for any y in $[a, b]$, $|y - x| < \delta(x) \Rightarrow |f(y) - f(x)| < \varepsilon/2$. This means whenever y is in the open set $B(x, \delta(x)) = \{z: |z - x| < \delta(x)\} \cap [a, b]$ then $|f(y) - f(x)| < \varepsilon/2$. Therefore the collection $\mathcal{C} = \{B(x, \delta(x)/2): x \in [a, b]\}$ is an open cover for $[a, b]$. Since $[a, b]$ is compact by the Heine-Borel Theorem (Theorem 5), \mathcal{C} has a finite subcover say $\mathcal{E} = \{B(x_1, \delta(x_1)/2), B(x_2, \delta(x_2)/2), \ldots, B(x_n, \delta(x_n)/2),\}$, where n is some positive integer. Now let $\delta = \min \{ \delta(x_1)/2, \delta(x_2)/2, \ldots, \delta(x_n)/2 \}$. Take any x, y in $[a, b]$ such that $|y - x| < \delta$. Since \mathcal{E} covers $[a, b]$, $x \in B(x_k, \delta(x_k)/2)$ for some $1 \leq k \leq n$.

Therefore, $|f(x_k) - f(x)| < \varepsilon/2$ \hspace{1cm} (1)

Now, let us see how far away from x_k is y.

$|y - x_k| = |y - x + x - x_k| \leq |y - x| + |x - x_k| < \delta + \delta(x_k)/2 \leq \delta(x_k)/2 + \delta(x_k)/2 = \delta(x_k)$.

Hence $y \in B(x_k, \delta(x_k))$ and we have $|f(y) - f(x_k)| < \varepsilon/2$. \hspace{1cm} (2)

Therefore,

$|f(y) - f(x)| = |f(y) - f(x_k) + f(x_k) - f(x)|$

$\leq |f(y) - f(x_k)| + |f(x_k) - f(x)|$ by the triangle inequality

$< \varepsilon/2 + \varepsilon/2 = \varepsilon$ by (1) and (2) above.

Hence, f is uniformly continuous.

This notion of uniform continuity proves useful to tell us that any continuous function on a closed and bounded interval is Riemann integrable.

Theorem 10. If the function $f : [a, b] \to \mathbb{R}$ is continuous, then it is Riemann integrable on $[a, b]$.

Proof. If $f : [a, b] \to \mathbb{R}$ is continuous, then it is also uniformly continuous. Therefore given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all x, y in $[a, b]$,

$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon(b - a)$. \hspace{1cm} (3)
Let $P: a = x_0 < x_1 < x_2 < \ldots < x_n = b$ be a partition with norm $||P|| < \delta$ that is, $||P|| = \max \{ |x_i - x_{i+1}| : i = 1, \ldots, n \} < \delta$. For $i = 1, \ldots, n$, let $M_i = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}$. Then since f is continuous on $[x_{i-1}, x_i]$, for each i, by the Extreme Value Theorem, $M_i = f(c_i)$ for some $c_i \in [x_{i-1}, x_i]$. Similarly, for each $i = 1, \ldots, n$, let $m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}$. Then again by the Extreme Value Theorem, for each $i = 1, \ldots, n$, there exists $d_i \in [x_{i-1}, x_i]$ such that $m_i = f(d_i)$. Then the upper Riemann sum with respect to P is

$$U(P) = \sum_{i=1}^{n} M_i (x_i - x_{i-1}) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1})$$

and the lower Riemann sum with respect to P is

$$L(P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}) = \sum_{i=1}^{n} f(d_i)(x_i - x_{i-1})$$.

Then the difference,

$$U(P) - L(P) = \sum_{i=1}^{n} (f(c_i) - f(d_i))(x_i - x_{i-1}) = \sum_{i=1}^{n} |f(c_i) - f(d_i)|(x_i - x_{i-1})$$

$$< \sum_{i=1}^{n} \frac{\varepsilon}{b-a} (x_i - x_{i-1}) \cdot \text{by (3) since } |c_i - d_i| \leq ||P|| < \delta, 1 \leq i \leq n .$$

Therefore, $U(P) - L(P) < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \frac{\varepsilon}{b-a} (x_n - x_0) = \varepsilon$.

Hence, Riemann's condition holds and so by Theorem 1 in Riemann Integral and Bounded function, f is Riemann integrable. This completes the proof.