
Functions of Bounded Variation and de La Vallée 
Poussin's Theorem 

By Ng Tze Beng 
 

This is the second of a series of articles towards the proof of the Denjoy Saks 
Young Theorem.  Part of the idea of the proof of Denjoy Saks Young Theorem, 
is to somehow filter the domain of the function by an increasing sequence of 
subsets, on which f is locally of bounded variation.  This is an intermediate 
result towards the proof of the Denjoy Saks Young Theorem. We present the 
idea of a function of bounded variation on arbitrary subset of  .  If the domain 
is an interval, then for a function of bounded variation on an interval, we have 
the well-known de La Vallée Poussin's Theorem, which gives a null subset 
where at each point, the function is not differentiable finitely or infinitely and 
outside of which, the function is differentiable finitely or infinitely and the 
modulus of the derivative is equal to the derivative of the associated total 
variation function and furthermore, its images under the function and the total 
variation function are null sets.  We prove here the generalised de La Vallée 
Poussin's Theorem for function of bounded variation on arbitrary subset of  .  
This is a key result towards the proof of the Denjoy Saks Young Theorem.  
Most proof of this intermediate result will involve some geometrical results 
concerning lines of tangents of the graph of the function as in Saks’ proof. 

 

Definition 1.  Let A be an arbitrary subset of  .  Suppose :f A is a finite 

valued function.  Suppose  [ , ] : ,i i i ix y x y A   is any finite set of non-

overlapping intervals.  If there exists a real number M > 0 such that 

                     ( ) ( )i i
i

f y f x M    

for every such finite set,  , of non-overlapping intervals, then the function f is 
said to be of bounded variation with bound M. 

 

Note that if f is of bounded variation, then for any arbitrary collection of non-
overlapping intervals, C   =  [ , ] : , ,   belongs to some index seti i i ix y x y A i ,  

                        ( ) ( )i i
i

f y f x M  , 
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since C   is at most denumerable.  Thus, we could have stated the definition of 
bounded variation in terms of arbitrary collection of non-overlapping intervals 
C  .  Plainly, these two conditions are equivalent. 

 

We shall examine the continuity property of a function of bounded variation. 

Since we know a function is continuous at a point if, and only if, the left and 
right limits of the function at the point are the same as the value of the function 
at the point, we examine the difference of the values of the function around the 
point. This leads to the notion of the saltus of the function at the point. 

 

Saltus Function, Limits and Continuity 

Definition 2.  Let :f Abe a finite valued function and A an arbitrary subset 

of  .  Suppose a  A is a limit point of A.  For each real number  > 0, let I  be 

an interval with length ( )I   and a I .   Let  

             ( , ) sup ( ) ( ) : , , for  with  and ( )s a f y f x x y A I I a I I          . 

Then, evidently ( , ) 0s a    and ( , )s a   is a decreasing function of  .   The saltus 

of f at a is defined to be 

                             
0

( ) lim ( , )s a s a





 . 

Note that f is always continuous at any isolated point of A.  So, with this 
definition, it is only meaningful to talk about saltus at a limit point.  By 
definition of continuity, it is easy to see that f is continuous at a limit point, a, if, 
and only if, the saltus of f at a is zero. We may thus extend the definition of 
saltus of f at an isolated point by defining it to be zero.  Hence, f is continuous at 
a point in A, if, and only if, the saltus of f at the point is zero. 

 

For each integer n ≥ 1, let 1
: ( )nD a A s a

n
    
 

.  Plainly, the set of 

discontinuities of f is equal to 
1

n
n

D



 . 
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Theorem 3. If the finite valued function :f A is of bounded variation on A, 

then nD  is finite for each integer n ≥ 1. 

Proof. 

Note that nD  does not contain any isolated points of A. 

Suppose on the contrary that for some n ≥ 1, nD  is infinite.  Then take an 

infinite subset, say  1 2, ,x x   of nD .  Suppose f is of bounded variation with 

bound M.  Let k be an integer such that k
M

n
 .  Then for 1 2, , , kx x x  we can find 

non-overlapping intervals  ( ), 1, ,
i iI x i k   with ( )

i iI x  containing ix .   Since 

each ix  is a limit point and 1
( )is x

n
 ,  we can find , ( )

ii i iy z I x A   such that  

                                  1
( ) ( )i if y f z

n
   . 

We deduce this as follows: 

Since 1
( )is x

n
 ,   1

sup ( ) ( ) : , ( ) ( )
i i if y f z y z A I x s x

n     .   Therefore, by 

definition of supremum, there exists , ( )
ii i iy z I x A   such that 1

( ) ( )i if y f z
n

  . 

 Hence, we get  
1

( ) ( )
k

i i
i

k
f y f z M

n

   , contradicting that f is of bounded 

variation with bound M.   We conclude that each nD  is finite. 

 

Theorem 4.  Let :f Abe a finite valued function and A an arbitrary subset 

of  .   Suppose f is of bounded variation on A.  Then the set of discontinuities 
of f is at most denumerable. 

Proof. 

Let D be the set of discontinuities of f.  Then 
1

n
n

D D




 .  Since each nD  is finite 

by Theorem 3, it follows that D is at most denumerable as it is the countable 
union of finite sets.  
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Theorem 5.  Let :f Abe a finite-valued function of bounded variation on 

A.  If x is a left limit point of A, then 
,

( ) lim ( )
y x y A

f x f y




 
  exists.  If x is a right 

limit point of A, then 
,

( ) lim ( )
y x y A

f x f y




 
  exists.   

Proof.   

Suppose x is a limit point on the right of A.   Since f is of bounded variation on 
A, f is bounded on A.   Hence, 

,

limsup ( )
y x y A

f y
 

 and 
,

liminf ( )
y x y A

f y
 

 exist and are finite.  

Suppose 
,

limsup ( )
y x y A

f y
 

  and 
,

liminf ( )
y x y A

f y
 

 .  We want to show that   .  

Suppose 0     .  For each integer n ≥ 1, let 1
sup ( ) : ,na f x x x x A

n

       
  

 

and   1
inf ( ) : ,nb f x x x x A

n

       
  

.  Then na   and nb  .  Hence, 

0n na b        .  Now 1
sup ( ) ( ) : , , 0n na b f y f z y z x x A

n
           

  
.  

Therefore, by definition of supremum, there exist 1
, ,n ny z x x A

n
    
 

 such that 

                      ( ) ( )n nf y f z    . 

We shall find a sequence of points in A, 
1 1 2 2n n n ny z y z       such that 

( ) ( )
i in nf y f z   . 

Starting with n =1, we can find  
1 1
, , 1n ny z x x A   with 

1 1n ny z such that 

1 1 1 1
( ) ( ) ( ) ( )n n n nf y f z f y f z     . Let 2n be such that 

 
1 2 2

2

1
min ,n n ny x z x z x

n
     .  As   

1 2n na b   , we can find 

2 2

2

1
, ,n ny z x x A

n

 
   
 

 such that 
2 2

( ) ( )n nf y f z   .  In general, suppose 

1
, ,

k kn n
k

y z x x A
n

 
   
 

 have been found with 
k kn ny z so that ( ) ( )

k kn nf y f z   .  

Let 1kn  be such that  
1

1
min ,

k kn n
k

y x z x
n 

   .   And as 
k kn na b   , we can find 
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1 1

1

1
, ,

k kn n
k

y z x x A
n 



 
   
 

 such that 
1 1

( ) ( )
k kn nf y f z 
 
  .  We may assume that 

1 1k kn ny z
 
 , renaming if necessary and we always have ( ) ( )

k kn nf y f z   . 

Let N be an integer such that N M  , where M is the variation bound for f on A.  
Then, taking the sequence  

1 1 2 2 N Nn n n n n ny z y z y z       , we get 

                          
1

( ) ( )
k k

N

n n
k

f y f z N M


   . 

This contradicts that f is of bounded variation on A with bound M.  Hence, 
   and this means 

,
( ) lim ( )

y x y A
f x f y





 
  exists and is finite.   

Similarly, we can prove that if x is a left limit point of A, then 

,
( ) lim ( )

y x y A
f x f y





 
  exists and is finite. 

 

Decomposition of Function of Bounded Variation  

We shall show that any function of bounded variation is a difference of two 
increasing functions.  Many results can be proved first on increasing function 
and then extend to the function of bounded variation via the total variation 
function of a function of bounded variation. 

Theorem 6.  Let :f A be a finite-valued function of bounded variation on 
A.  Pick a point a in A as the anchor point. Then there is a decomposition 

1 2( ) ( ) ( ) ( )f x f a x x     , where 1 2and    are respectively the positive and 
negative variation of f satisfying 1 2( )= ( ) 0a a   and are increasing functions on 
A.  Moreover, 1 2( ) and ( ) x x  are optimal in the sense that if  we have another 

decomposition of  f (x)  f (a),   f (x)  f (a) = g(x)  h(x), where g and h are 
increasing functions with g(a) = h(a) = 0, then for x a , 

1 20 ( ) ( ) and 0 ( ) ( )x g x x h x      and for x a   1 20 ( ) ( ) and 0 ( ) ( )x g x x h x     .  
The function f is the difference of two increasing function, 2( ) ( ) ( )f x x x   , 
where 1( ) ( ) ( )x x f a   . 
 
Proof. 

Fix a point a in A.  We shall use this point as the anchor point for the variation 
function of f.   
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Suppose x is in A and x > a.   Let 0 1 2: nQ a x x x x x       be any subdivision 

of (a, x) with points in A.  Let 

                  1( , ) max 0, ( ) ( )i i
i

P x Q f x f x     

and            1( , ) min 0, ( ) ( )i i
i

N x Q f x f x   . 

Then,  ( ) ( ) ( , ) ( , )f x f a P x Q N x Q   . 

Let   ( ) sup ( , ) :  a subdivision of ( , ) by points in p x P x Q Q a x A  and 

         ( ) inf ( , ) :  a subdivision of ( , ) by points in n x N x Q Q a x A . 

We claim that ( ) ( ) ( ) ( )f x f a p x n x   .  We deduce this as follows. 

Take any   > 0.  Then there exists a subdivision Q  of (a, x) such that 

                 ( ) ( , ) ( )p x P x Q p x    . 

It follows that ( ) ( ) ( , ) ( , ) ( ) ( )f x f a P x Q N x Q p x n x        . Since  is arbitrary, 

we conclude that   ( ) ( ) ( ) ( )f x f a p x n x   . 

By definition of infimum, there exists a subdivision Q  of (a, x) such that 

                 ( ) ( , ) ( )n x N x Q n x    . 

Hence, ( ) ( ) ( , ) ( , ) ( ) ( )f x f a P x Q N x Q p x n x        .  As  is arbitrary, we 

conclude that   ( ) ( ) ( ) ( )f x f a p x n x   .  It follows that ( ) ( ) ( ) ( )f x f a p x n x   . 

Plainly, p(x) is an increasing function on [ , )a A   and n(x) is a decreasing 

function on [ , )a A  . It follows that  

                            ( ) ( ) ( ) ( ( ))f x f a p x n x     

is the difference of two increasing functions on [ , )a A  . 

We now consider points x in A with x < a, i.e., ( , ]a A  .  Take a subdivision 

0 1 2: nQ x x x x x a      .   

Let  1( , ) max 0, ( ) ( )i i
i

P x Q f x f x    and   1( , ) min 0, ( ) ( )i i
i

N x Q f x f x   . 
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This time we have  ( ) ( ) ( , ) ( , )f a f x P x Q N x Q   . 

As before, define for x < a, 

                  ( ) sup ( , ) :  a subdivision of ( , ) by points in p x P x Q Q x a A  

and             ( ) inf ( , ) :  a subdivision of ( , ) by points in n x N x Q Q x a A . 

And we deduce as before that for x < a,  ( ) ( ) ( ) ( )f a f x p x n x   so that 

                 ( ) ( ) ( ) ( )f x f a p x n x    . 

Note that for all x in A, ( ) 0p x   and ( ) 0n x  . 

Note that if y x a  , then ( ) ( )p y p x , ( ) ( )n y n x and we have that 

( ) ( )p y p x    and ( ) ( )n y n x   . 

We define for x in A, 

           1

( ),

( ) 0, ,

( ),

p x x a

x x a

p x x a




 
 

   and 2

( ),

( ) 0, ,

( ),

n x x a

x x a

n x x a


 
 
 

. 

Plainly, 1 2 and    are increasing functions.  Moreover,              

                         1 2

( ) ( ),

( ) ( ) 0, , ( ) ( )

( ) ( ),

p x n x x a

x x x a f x f a

p x n x x a

 
 

    
  

.   

Therefore, 1 2( ) ( ) ( ) ( )f x f a x x    .  If we let 1( ) ( ) ( )x x f a   , then ( )x  is an 

increasing function on A and so 2( ) ( ) ( )f x x x   is a difference of two 

increasing function.  

Take any x in A.  Assume x a .  Let 0 1: nQ a x x x x     be a partition for 
[a, x], with points in A.  Then 
            1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i if x f x g x g x h x h x g x g x          .  

Therefore, as ( , )P x Q  is the sum over the terms for which  1( ) ( ) 0i if x f x   ,  

                       1
1

( , ) ( ) ( ) ( ) ( ) ( )
n

i i
i

P x Q g x g x g x g a g x


      . 

It follows that, ( ) ( )p x g x .  Hence, 1( ) ( )x g x  . 
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Suppose now x a .   Let 0 1: nQ x x x x a       be a partition of [ , ]x a  by 
points in A.  As before, we have 
                1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i if x f x g x g x h x h x g x g x          . 

Now, for x a ,  1( , ) max 0, ( ) ( ) ( )i i
i

P x Q f x f x g x    .   Hence, ( ) ( )p x g x   

and so 1( ) ( ) ( )x p x g x    .   
Now, for x > a, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )g x h x f x f a p x n x g x n x       .   Therefore, 

( ) ( )n x h x  .  Hence, 2 ( ) ( ) ( )x n x h x    .  
Suppose now x < a.  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )g x h x f x f a p x n x g x n x        .  Therefore, 

( ) ( )n x h x .  It follows that  2 ( ) ( ) ( )x n x h x   .  
 

Upper and Lower Derivates 

Next, we examine the derivative property of a function of bounded variation.  

Firstly, we recall the definition of the upper and lower derivates of a function. 

 

Definition 7.  Let :f A be a finite valued function.  Let x be a limit point of 

A. The upper derivate of f at x is defined as ( ) ( )
( ) limsup :A

t x

f t f x
D f x t A

t x

    
 

and the lower derivate of f at x is ( ) ( )
( ) liminf :A

t x

f t f x
Df x t A

t x

    
. 

Let ( ) ( )
sup : 0, ( , )

f x h f x
a h x h x x A

h           
 

. Then we have, 

               

0

( ) ( ) ( ) ( )
( ) limsup : limsup : 0, ( , )A

t x

f t f x f x h f x
D f x t A h x h x x A

t x h
 

 

                   
            

0
lim a
 

 . 

Likewise, let ( ) ( )
inf : 0, ( , )

f x h f x
b h x h x x A

h           
 

and we get 

                  

0

( ) ( ) ( ) ( )
( ) liminf : liminf : 0, ( , )A

t x

f t f x f x h f x
Df x t A h x h x x A

t x h
 

 

                   
            

0
lim b
 

 . 
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Note that a  is a decreasing function of   and b  is an increasing function of  . 

 

Theorem 8.  Suppose :f A is a finite valued function of bounded variation 

on A.  Then, for almost all x in A, the upper and lower derivates of f at x exist, 
are finite and equal.  The common value ( )A Df x  is called the derivative of f over 

A at x.    

 

Remark.  If A is an interval, then ( )A Df x is just the usual definition of the 

derivative of  f  at x.  Note that ( ) ( )A AD f x Df x  if, and only if,

( ) ( ) ( ) ( )A A A AD f x D f x D f x D f x 
    .  (See Arbitrary Function, Limit 

Superior, Dini Derivative and Lebesgue Density Theorem.) 

 

Theorem 9.  Suppose :f A is a finite-valued function of bounded variation 

on A.  Assuming that A is either bounded or of finite outer measure.  Then, 

except for a set of measure zero in A, ( ) and ( )A AD f x Df x exist and are finite. 

Proof. 

Observe that if 
0

( ) ( )
limsup : 0, ( , )

f x h f x
h x h x x A

h
 



          
 

, then 

0

( ) ( )
limsup : 0, ( , )

f x h f x
h x h x x A

h
 



   
        

 
and if

0

( ) ( )
liminf : 0, ( , )

f x h f x
h x h x x A

h
 



          
 

, then 

0

( ) ( )
limsup : 0 ( , )

f x h f x
h x h x x A

h
 



   
        

 
.  

Note that if 
0

( ) ( )
limsup : 0, ( , )

f x h f x
h x h x x A

h
 



          
 

, then

0

( ) ( )
liminf : 0, ( , )

f x h f x
h x h x x A

h
 



          
 

 and if 
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0

( ) ( )
liminf : 0, ( , )

f x h f x
h x h x x A

h
 



          
 

, then 

0

( ) ( )
limsup : 0, ( , )

f x h f x
h x h x x A

h
 



          
 

. 

Let  1 : ( )AE x A D f x     and  2 : ( )AE x A D f x    .   Observe that 

  1 2: ( )  or ( )  A Ax A D f x D f x E E        and

1 2
0

( ) ( )
: limsup : 0, ( , )

f x h f x
E E E x A h x h x x A

h
 



    
              

  
 . 

We shall show that E is of zero measure. 

Let ( ) ( )
sup : 0, ( , )

f x h f x
a h x h x x A

h     
       

 
.  If x E, then 

0
lim a
 

   . 

Hence, for an arbitrary positive number K, there exists a  0   such that for all 
0     , a K  . 

Choose an integer N such that 1

N
 . 

Thus, for any integer n ≥ 1 , we can find 1 1
,nx x x A

N n N n
       

 such that 

( ) ( )n

n

f x f x
K

x x





and 1

0 nx x
N n

  


.  In this way we obtain a sequence ( )nx  

such that nx x .   Let ( )nv x  be the closed interval determined by the points x 

and nx , i.e., ( ) [ , ]n nv x x x  if nx x  and ( ) [ , ]n nv x x x  if nx x .   Let  ( )x iv x   be 

the family of closed intervals.  Then  :x x E     constitutes a covering of E 

in the Vitali sense.  Since A is of finite outer measure, E is also of finite outer 

measure.  Therefore, by the Vitali Covering Theorem, for any  > 0, there exists 

a finite disjoint set J of closed intervals in  such that  

                                    * *( )
i

i
I J

m I m E 


 
   

 
  . 

Suppose the number of members in J is L.  For iI J , there exists iy E  such 

that  ( ) ,  or ,
i i ii n i i n n iI v y y x x y         , where 

in ix y .  Thus, we have 



11 
 

                           
1 1

i i

L L

n i n i
i i

f x f y K x y
 

     . 

Now 
1

*
i

i

L

i n i
iI J

m I x y


 
   

 
 and so      

1

*( )
i

L

n i
i

f x f y K m E 


   . 

Suppose the variation bound of f is M.  Suppose m*(E) > 0. We can take the 

number K such that *( ) 1Km E M  .  By taking   > 0 sufficiently small so that 

1K   .  We then obtain 

                            
1

*( )
i

L

n i
i

f x f y K m E M


    , 

contradicting that f is of bounded variation on A with bound M.  Therefore, 
m*(E) = 0. Hence, 1 2 and E E  are of measure zero.  It follows that 

( ) and ( )A AD f x Df x exist and are finite for almost all x in A. 

 

We may remove the assumption imposed on A in Theorem 9. 

Corollary 10.  Suppose :f A is a finite valued function of bounded 

variation on A.  Then, except for a set of measure zero in A, ( ) and ( )A AD f x Df x

exist and are finite. 

Proof.  If A is bounded, then the conclusion is given by Theorem 9.  Suppose A 
is unbounded. Subdivide A into countable non-overlapping bounded pieces. We 
can do this by taking each piece as [ , 1]nA A n n   . Since the conclusion is 

valid for each nA  , it follows that it also holds for the whole space A.    

 

Proof of Theorem 8. 

Suppose :f A is a function of bounded variation on A.  By Theorem 6, f is a 

difference of two increasing and bounded function.  It suffices to prove the 
theorem for f an increasing and bounded function.  We shall assume that A is 
either bounded or of finite outer measure. By Theorem 9 or Corollary 10, 

outside of a set of measure zero, ( ) and ( )A AD f x Df x exist and are finite.  Let  

 : ( ) and ( ) exist and are finiteA AE x A D f x Df x  .  Since f is increasing, ( ) 0A Df x  . 
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For any rational number h, k such that  0 h k  , let   

           , :  and ( ) ( )Ah k AE x E Df x h k D f x     . 

Let x E.  By definition of ( )A Df x , there exists a sequence  ix  in A such that 

ix x  , ix x  and  

                     ( ) ( ) ( ) ( )i i

i i

f x f x f x f x
h

x x x x

 
 

 
.  --------------------------  (1) 

Thus, we have arbitrary small closed intervals [ , ] or [ , ]i ix x x x  satisfying (1).   

These intervals for each of the points x in ,h kE  form a Vitali covering for ,h kE  .  

Hence by the Vitali Covering Theorem, there exists a finite set of disjoint closed 
intervals, 1 2, , , nv v v  such that  

                   , , ,
1 1

*( ) *( ) *( ) *( )
n n

h k h k i i h k
i i

m E m E v m v m E 
 

        . 

If ix is the point ,h kx E  associated with the closed interval, iv  , then 

[ , ] or [ , ]
i ii i n n iv x x x x , where 

in ix x  and 
( ) ( )

i

i

n i

n i

f x f x
h

x x





.  We then have 

                   ,
1 1

( ) ( ) *( ) *( )
i

n n

n i i h k
i i

f x f x h m v h m E 
 

     .  ----------------------  (2) 

Consider the set , ,
1

n

i h k h k
i

v E E


 
  

 
 .  For each integer 1  i  n, let int( )iv  be the 

interior of iv .   For each x in  ,
1

int( )
n

i h k
i

v E


 
 

 
 , we have that ( )A D f x k .  

Therefore, by definition of ( )A D f x , for each x in ,
1

int( )
n

i h k
i

v E


 
 

 
 , there exists a 

sequence  iy such that iy x , iy x and  

                     ( ) ( )i if y f x k y x   .  --------------------------  (3) 

Thus, we have arbitrarily small closed intervals [ , ] or [ , ]i iy x x y  satisfying (3).  

Furthermore, we may restrict these small intervals to be in 
1

int( )
n

i
i

v

 , since 



13 
 

1

int( )
n

i
i

x v


 .   These collection of arbitrarily small closed intervals for each x in  

,
1

int( )
n

i h k
i

v E


 
 

 
  forms a Vitali covering for ,

1

int( )
n

i h k
i

v E


 
 

 
   Hence, by the 

Vitali Covering Theorem, there is a finite disjoint sets of closed intervals, 

1 2, , , pv v v    in 
1

int( )
n

i
i

v

  such that  

                  , ,
1 1

*( ) *( ) *( ) 2
p n

i h k i h k
i i

m v m E v m E 
 

        . 

Thus, if  and i iy y  are end points of iv  , then by (3) we have 

                       ,
1 1

( ) ( ) *( ) *( ) 2
p p

i i i h k
i i

f y f y k m v k m E 
 

      . ---------------  (4) 

Since 
1

n

i i
i

v v


   and f is increasing, 
1 1

( ) ( ) ( ) ( )
i

p n

i i n i
i i

f y f y f x f x
 

    .  It follows 

then from (2) that  

                       ,
1 1

( ) ( ) ( ) ( ) *( )
i

p n

i i n i h k
i i

f y f y f x f x h m E 
 

      . ------------  (5) 

Therefore, from (4) and (5) we get,    , ,*( ) 2 *( )h k h kk m E h m E        

and so      ,*( ) 2 2h kk h m E h h     .  Since  is arbitrary, we conclude that 

                       ,*( ) 0h kk h m E  . 

This is only possible if  ,*( ) 0h km E   as k – h > 0. 

Let   : ( ) ( )AAE x E Df x D f x   . Then  ,
,  rational,

h k
h k h k

E E


  . Since each ,h kE  is of 

measure zero by we have just shown, E   is of measure zero.  This means except 

for a set of measure zero,  ( ) and ( )A AD f x Df x exist, are finite and equal.   

Note that if f is of bounded variation on A, then by Theorem 6, 1 2f     , 

where 1 2 and    are increasing functions on A.  Since, except for a set of 

measure zero in A, 1 1( ) and ( )A AD x D x  exist, are finite and equal and also 

2 2( ) and ( )A AD x D x  exist, are finite and equal, it follows that except for a set of 
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measure zero in A, ( ) and ( )A AD f x Df x exist, are finite and equal.  This means f is 

differentiable almost everywhere on A.   

If A is unbounded or of infinite outer measure, then we can subdivide A into 
countable union of bounded subsets.  Since the conclusion is true for each 
bounded piece, it is true also for the countable union as countable union of set 
of measure zero is of measure zero. 

 

Now we examine the measurable property of the derivative of measurable 
function.  If f is measurable, then its derivative is also measurable. 

 

Theorem 11.   Suppose :f A  is a measurable finite valued function and A 

is measurable.  Suppose ( )A Df x  exists and is finite for every x in A.  Then 

( )A Df x is a measurable function on A. 

 

We shall need the well-known Lusin Theorem (see Royden and Fitzpatrick, 
Real Analysis) for approximation of measurable function by continuous 
function.  We shall state the theorem without proof. 

 

Theorem 12.   Suppose :f E   is a measurable finite valued function and E 

is measurable.  Then, for any  > 0, there exists a continuous function g on   
and a closed set F contained in E for which f = g on F and ( )m E F   . 

 

Proof of Theorem 11.  

We shall prove this theorem in stages. 

Firstly, suppose A is an interval, say, ( , )a b  and f is defined on  .  Extend f 

trivially to a measurable function on  .  Then since f is differentiable on A, for 
any sequence  nh  with 0nh   and 0nh  , the function 
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( ) ( )

( ) n
n

n

f x h f x
g x

h

 
   

is measurable.   Since ( )A Df x exists for x in A, ( ) ( )n Ag x Df x  on A.  This 

implies that ( )A Df x is measurable on A. 

If f is only defined on A and A is not an interval, then it is not necessary that for 
x in A, that nx h  is in A. Thus, we need to find a function defined on  and 

closed to f on A or some subset of A.  We use Lusin Theorem to furnish this 
function. 

By Lusin Theorem, for each integer n, there exists a closed set nC A  and a 

continuous function :n   such that ( ) ( )n x f x  for all nx C and 

1
( )nm A C

n
   .    

Now since nC  is closed the complement of nC is at most a countable union of 

disjoint open intervals.  Therefore, the boundary of  nC  is of measure zero.  Now 

n f   on the interior of nC , int nC .  Note that ( )A Df x is defined for all x in int nC . 

Now for each int nx C , there exists an open interval ( , ) int nx x C A     .  It 

follows that ( ) ( )n AD x Df x   on int nC .  Thus, ( ) ( )n AD x Df x   almost 

everywhere on nC .  Now int nC  is a countable disjoint union of open intervals.  

Therefore, by what we have just shown, ( )nD x is measurable on each of the 

open intervals and so it is measurable on int nC  and hence on nC .  It follows that

( )A Df x is measurable on nC .  Note that as 1
( )nm A C

n
  , ( ) 0nm A C   as n  . 

For each integer n ≥ 1, let 1 2n nK C C C    .  Let 

         
( ),

( )
0,

A n

n c
n

Df x x K
x

x K


 


 . 

Then n  is measurable.  Note that nK A  and ( ) 0nm A K  .  Take 


1

n
n

K K A




  .  As ( ) ( ) ( )n nm K m A m A K   , ( ) ( )nm K m A .  By the continuity 

from below property of measure,   ( )m K m A  and so   0m A K   
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 Hence, ( ) ( )n Ax Df x   for almost all x in A.  Since each n  is measurable, 

( )A Df x is measurable. 

 

Total Variation  

Suppose :f A is a finite valued function of bounded variation on A.  Take 

an anchor point a in A.  Then we have that  1 2( )f f a      , where   

                  1

( ),

( ) 0, ,

( ),

p x x a

x x a

p x x a




 
 

   and 2

( ),

( ) 0, ,

( ),

n x x a

x x a

n x x a


 
 
 

 

and p(x) and n(x) are defined in the proof of Theorem 6. 

We define the total variation function of f,  :f A   by  

             1 2

( ) ( ),

( ) ( ) ( ) 0, ,

( ) ( ),
f

p x n x x a

v x x x x a

n x p x x a

 
 

   
  

. 

Note that f is an increasing function.  Moreover, ( ) 0f x  for all x a   in A and 

( ) 0f x   for all x in A with x a .  Observe that for x and y in A, 

                     ( ) ( ) ( ) ( )f ff y f x y x     for y x . 

Theorem 13.  Suppose :f A is a finite valued function of bounded variation 

on A.  Then  :f A   is continuous at x in A if, and only if, f is continuous at 

x. 

Proof. 

Note that we choose a point a in A as the anchor point for the definition of the 
positive and negative variations of f.   Observe that 1 2( ), ( ) 0x x    for x a  and

1 2( ), ( ) 0x x   for x a .  It is to be noted that for all x in A, ( ) 0p x   and ( ) 0n x  . 

We shall first consider the isolated points of A.  f is of course always continuous 
at any isolated point of A.  Suppose c is an isolated point of A. Since it is an 

isolated point, there exists  > 0 such that ( , )c c A     .  Suppose c a . 

Let  sup ,c y A y c     and   inf ,d y A y c    .  Then c c c     and 
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d c c    .  Then 1 2 and    are not defined at any point in ( , ) { }c d c   .  Hence, 

trivially 1 2( ) ( ) ( )f x x x     is continuous at c.  

We may assume that the anchor point, a, is not an isolated point of A.  

Take c a limit point of A.  Suppose that f is continuous at c. Then for any  > 0, 
there exists 1 0   such that 

                                1  and ( ) ( )
2

x c x A f x f c
      .  -------------------  (1) 

Suppose c is a right limit point of A.  We assume that c ≥ a.  Then for any 0  , 

 ,c c A    .   Take any  1,b c c A   .  Now, we take the variation 

function of f anchor at the point c, , :f c A  . 

 Then by definition of the total variation of f,  

 , 1 0
1

( ) sup ( ) ( ) : ,  a subdivision of [ , ] by points in 
n

f c i i n
i

b f x f x c x x b c b A 


       
 
  .   

Hence, given 0  , there exists a partition of [c, b] by points in A,    

                     0 1 nc x x x b      , ix A   

such that 

                      , 1 ,
1

( ) ( ) ( ) ( )
2

n

f c i i f c
i

b f x f x b
 



    . 

Let 1 0 1( ) ( )x x x c     .  Then for ( , )x c c A   , 

         , 1 1
2

( ) ( ) ( ) ( ) ( )
2

n

f c i i
i

b f x f c f x f x
 



      

                    1 1
2

( ) ( ) ( ) ( ) ( ) ( )
n

i i
i

f x f x f x f c f x f x 


       

                    1 1
2

( ) ( ) ( ) ( ) ( ) ( )
n

i i
i

f x f c f x f x f x f x 


       
 

  

                   ,( ) ( ) ( )f xf x f c b    
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                   , ( )
2 f x b
     by (1). 

Hence,  

                             , ,( ) ( )f c f xb b    .   ---------------------   (2) 

Next we claim that 

               , , , ,( ) ( ) ( ) ( )f a f a f c f xx c b b      . 

Now  

, 1 0
1

( ) sup ( ) ( ) : ,  a subdivision of [ , ] by points in 
n

f a i i n
i

x f x f x a x x x a x A 


       
 
   

  1 0
1

sup ( ) ( ) : ,  a subdivision of [ , ] by points in 
n

i i n
i

f x f x a x x c a c A


       
 
   

1 0
1

sup ( ) ( ) : ,  a subdivision of [ , ] by points in 
n

i i m
i

f x f x c y y x c x A


       
 
  . 

Thus, we have  

                                     , , , ,( ) ( ) ( ) ( )f a f a f c f ax c x x      .  -------------------------  (3) 

Hence,  , , ,( ) ( ) ( )f a f a f cx c x    . 

Similarly, we can derive that 

                                   , , , ,( ) ( ) ( ) ( )f c f c f x f cb x b b       

and so  

                                            , , ,( ) ( ) ( )f c f x f cb b x    .  --------------------------- (4) 

Therefore, , , , , ,( ) ( ) ( ) ( ) ( )f a f a f c f c f xx c x b b          .    

This shows that , ( )f a x  is continuous from the right at c. 

Suppose now c is a left limit point of A.  Take any 1 0   such that 1 c a    and    

                        1  and ( ) ( )
2

x c x A f x f c
      . 
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Take a point b in 1( , )c c A  .  Then we can find a partition of [b, c] by points 

in A,  0 1 nx b x x c     , such that   

                       , 1 ,
1

( ) ( ) ( ) ( )
2

n

f b i i f b
i

c f x f x c
 



    . 

Let 1nc x   .  Then for x in  ( , )c c A  , 

                 
1

, 1 1
1

( ) ( ) ( ) ( ) ( )
2

n

f b i i n
i

c f x f x f c f x




 


      

                      
1

1 1
1

( ) ( ) ( ) ( ) ( ) ( )
2

n

i i n
i

f x f x f x f x f c f x
 

 


        

                     , ,( ) ( )
2 2f b f bx x
        . 

Hence, , ,( ) ( )f b f bc x     and so  

                  , , , , ,( ) ( ) ( ) ( ) ( )f a f a f x f b f xc x c c x          .  

This shows that , ( )f a x  is continuous from the left at c. 

We have thus shown that if c ≥ a and c is either a left or right limit point or 
both, then f is continuous at c implies that , ( )f a x  is continuous at c. 

Similarly, we can show that if f is continuous at c and c < a, then , ( )f a x  is 

continuous at c. 

Suppose now c is not an isolated point of A and , ( )f a x  is continuous at c.  Then 

given 0   , there exists 0   such that  

                      , , and ( ) ( )f a f ax c x A x c         . 

It follows that  , ,( ) ( ) ( ) ( )f a f af x f c x c      .  Hence, f is continuous at c.  

This completes the proof of Theorem 13. 

 

Derived Numbers 



20 
 

Suppose :f A  is a finite-valued function defined on an arbitrary subset of 

 .  Let x be in A.  Suppose there exists a sequence ( )na in A  such that na x  

and 
( ) ( )n

n

f a f x

a x




 tends to a limit, finite or infinite.  Then this limit is called a 

derived number of f.  If ( )A Df x  exist (finitely or infinitely), then f can have only 

one derived number at x. 

 

The next theorem is a key technical result to a de La Vallée Poussin's Theorem 
for a function of bounded variation. 

 

Theorem 14.  Suppose :f A is a finite-valued function of bounded variation 

on A.  Let h an k be positive numbers such that h < k.   Take a A be the anchor 
point for a total variation function of the function f as defined above. We 
assume a is a limit point of A and denote the total variation function by f .  Let  

E = {x  A: there is a derived number of f  at x greater than k and a derived 

number of f at x, whose absolute value is less than h.} and 

S = {x  A: there is a positive derived number and a negative derived number of 
f at x.}. 

Then *( ( )) *( ( )) *( ) 0fm E S m f E S m E S       .  

Proof. 

By Theorem 4, the set of discontinuity of f is at most denumerable.  Since 
denumerable subset of A and its image under f are null sets, we may thus 
assume that f is continuous on A.  We may assume that A has no isolated points, 
that is, every point of A is a limit point of A.  

If E S  is denumerable, then trivially the conclusion of the theorem holds. 

We now assume that E S  is non-denumerable. 

We assume that A is bounded. 

Let inf  and supA L A  .  Since A is bounded, and L  are finite. 
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We begin by considering the case when , L A .   

Thus [ , ]A L  . 

Suppose f is a function of bounded variation with bound M.  Then, given any  
> 0, there exists a partition of [ , ]L by points in A, 

          0 1: nP x x x L      , 

such that  

                                1
1

( ) ( )
n

i i
i

M f x f x M 


    .  ---------------------------  (1) 

Note that we may take , ( )fM L  . 

Observe that the derived number of f  is independent of the anchor point for f

since   , , , ,( ) ( ) ( ) ( )f a f a f b f bx y x y      for a, b, x, y in A.  

Thus, 

   , , 1 , 1
1 1

( ) ( ) ( ) ( ) ( )
t n

f i f i f i i
i i

z z L M f x f x    
 

          

                                 1
1

( ) ( )
t

i i
i

f z f z 


   ,   --------------------------------------- (2) 

for any partition, 0 1: tQ z z z L      , containing all the points of the 

partition P.  We shall denote this special partition P by 

              0 1: nP u u u L      . 

Now f and ,f   are bounded functions.  Thus, , ( )f E   has finite outer measure.  

Thus, there exists an open set U containing , ( )f E   such that 

                              ,( ) * ( )fm U m E   .  ----------------------------------- (3) 

Since f is continuous on A, by Theorem 13, ,f   is continuous on A and hence is 

continuous on E.  Since U is open, for each e E , there exists 0   such that    

 , ,( ) , ( )f fe e U       .  By continuity of ,f   at e E, there exists  > 0 such 

that  
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               , , ,, ( ) ( ) , ( )f f fx e e A x e e U                 . 

Thus, we can find arbitrary small closed intervals [x, y] with x  e y, x < y, 

x,yA such that 

               , , , , ,( ) ( ), ( ) ( ) , ( )f f f f fe x y e e                . 

Note that e is a limit point of A, it may be a left limit point only or a right limit 
point only or both.  Since ,f  has a positive derived number > k at e, we can find 

such arbitrary small intervals [x, y] such that  

                                   , ,( ) ( )f fy x
k

y x

 



  .   ----------------------  (4) 

We deduce this claim as follows. 

Since there is a derived number at e greater than k , there is a sequence  nx  in A 

such that  nx e  and , ,( ) ( )
lim f n f

n
n

x e
k

x e

 






  . 

Note that for any  > 0, 

 , , , ,( ) ( ) ( ) ( )
sup :  or ,| | , , limf f f n f

n
n

x y x e
x e y x e y x y x y A k

x y x e

   




  
           

     . 

Hence, there exist x, y A with x y    such that  

                                , ,( ) ( )f fx y
k

x y

 



  . 

Thus, we can cover , ( )f E  by arbitrary such small closed intervals

, ,( ), ( )f fx y     for each , ( )f e   corresponding to arbitrary small choice of  .  

Note that x may be equal to e or y may be equal to e.  Therefore, by the Vitali 
Covering Theorem, we can cover , ( )f E  almost everywhere by countable 

mutually disjoint closed intervals   , ,( ), ( ) , , ,f i f i i i i ia b a b a b A       .  It follows 

that the collection of intervals   , , , ,i i i i i ia b a b a b A  are also mutually disjoint. 

Note that for each i, , ,( ), ( )f i f ia b U      and 
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                              , ,( ) ( )f i f i i ib a k b a      ----------------- (5) 

by inequality (4). 

Hence,       , , ,* ( ) ( ) ( ) ( )f f i f i i i
i i

m E m U b a k b a            by inequality (5). 

It follows that 

                                 ,

1
* ( )i i f

i

b a m E
k

     .  ----------------- (6) 

Without loss of generality we may assume that the set of points of the partition 

 0 1: nP u u u L       does not contain any point of E.  If P contains a point in 

E, we may just remove this point from E without affecting the conclusion of the 
theorem. We may thus remove all the points in P that are in E from E. Observe 

that the partition P depends on .  By taking 1

N
    and letting N tends to 

infinity, we would remove at most a denumerable number of points from E. 
Since denumerable set of points has zero measure, the removal of these points 
does not affect the conclusion of the theorem. 

Next, we observe that if the anchor point chosen is ( , )a L  , then 

, , ,( ) ( ) ( )f a f fx x a     .  Thus, the definition of E and S does not depend on the 

anchor point.   

We now assume that for any of the partition P, P E  .   Now we shall refine 
our covering.  Firstly, we examine the end points of the intervals   

  , , , ,i i i i i ia b a b a b A  . We shall examine the points in  ,i iE a b .  Note that the 

collection  ,i ia b is at most denumerable and so by not considering these points 

will not affect the conclusion of the theorem. So, we now remove the end points 

 ,i ia b from E. 

 For each   ,i ie E a b  , corresponding to any 0   with 

 , ,( ) , ( )f fe e U       , as P E  , there exists a 0   such that  

              ,e e P     ,  , ( , )i i
i

e e a b      

and          
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               , , ,, ( ) ( ) , ( )f f fx e e A x e e U                 .             

Thus, we can find for e in E, arbitrary small interval [x, y] with x e y  , 

, ,x y x y A   such that  , { , }i ix y A a b P   , 

                 , , , , ,( ) ( ), ( ) ( ) , ( )f f f f fe x e e e                . 

Now we consider the other property that the points in E have, namely that at 
each point of E, there is a derived number whose absolute value is less than h.   

So, at each point e of  ,i iE a b  there is a derived number of f whose absolute 

value is less than h. 

We claim that we can find arbitrary small interval, [c, d], with c, d  A, such 
that e is either one of the end points of the interval such that 

                            
( ) ( )f d f c

h
d c





, 

[ , ] [ , ]i i
i

c d a b  and that [ , ]P c d  . 

We elaborate and prove  this claim as follows. 

We may assume that every point of A is a two-sided limit point of A. As one-
sided only limit points or non-limit points constitute at most a denumerable set, 
this assumption would not affect the conclusion of the theorem. If need be, we 
shall remove these points from A. 

Let  ,i ie E a b  . Suppose    is a derived number of f at the point e such that 

h   .  Then there exists a sequence,  nx ,  such that nx e , nx e  and 

                         ( ) ( )n

n

f x f e
h

x e


 


. 

Thus, there exists N such that   

                                ( ) ( )
0 n

n

f x f e
n N h

x e


   


. 
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As  nx e , we may choose N such that 0 nn N x e      .  Hence, we can 

choose 0N N  such that 0

0

( ) ( )N

N

f x f e
h

x e





 and 

0
0 Nx e    .  In particular we 

may choose  > 0 sufficiently small so that  ( , ) ,i i
i

e e P a b   
     

 
 .  

Take 
0Nc x .  Then c > e or c < e.  If c < e, let d = e. If c > e, rename c as d and 

let c =e. Hence, we have [ , ]P c d and [ , ] ( , )i i
i

c d a b . 

If  > 0, then we can choose c such that ( ) ( )
0

f d f c
h

d c


 


.  This is because by 

definition of limit, by taking min ,
2 2

h      
 

 , there exists integer N  such that 

       ( ) ( )
0

2
n

n

f x f e
n N h

x e

  
      


.  

and then we can pick c arbitrarily closed to e as before.  It follows after 
renaming c and d so that c < d , ( ) ( ) 0f d f c   and , ,( ) ( ) 0f fd c    . 

If  = 0, then for any 0 h  , there exists an integer N such that  

                ( ) ( )
0 n

n

f x f e
n N h

x e


    


. 

Since f is continuous at e and nx e  , we have that ( ) ( )nf x f e . We may 

assume that nx e  for all integer n ≥ 1. 

Suppose the sequence  ( )nf x is not eventually constant, i.e., for any integer N , 

there exists Nn N such that ( ) ( )
Nnf x f e .   We may then replace the sequence 

 nx  by the subsequence  
Nnx . We shall then obtain the closed interval [c, d] 

with , ,( ) ( ) 0f fd c    . 

Suppose the sequence  ( )nf x is eventually constant, i.e., there exists an integer 

N, and ( ) ( )nn N f x f e   .  If there exists an integer n  such that 

, ,( ) ( ) 0f n fx e    , then, as nx e , ,f  is constant on [ , ]nx e A  or on [ , ]ne x A .  

It follows that ( , ] { }nx e E e  or [ , ) { }ne x E e  as every point x in ( , )nx e A or 
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( , )ne x A would have , ( ) 0A fD x   so that every derived number of ,f   at x in 

( , )nx e A or ( , )ne x A is zero.  Thus,  e E   and so e belongs to a set, which 

is at most denumerable.  We may remove these points from E without affecting 
the conclusion of the theorem. We may thus assume that , ,( ) ( ) 0f n fx e    for 

all integer n ≥ 1, that is, , ,( ) ( ) 0f n fx e     for all integer n ≥ 1. 

Hence, we can cover , ( )f E  by arbitrary small such closed interval 

, ,( ), ( )f fc d      with [ , ] [ , ]i i
i

c d a b  and that [ , ]P c d  .  Therefore, by the 

Vitali Covering Theorem, we can cover , ( )f E   almost everywhere by countable 

disjoint closed intervals  , ,( ), ( )f i f ic d     with [ , ]i iP c d  ,  [ , ] ( , )i i i i
i

c d a b  

and 

                           ( ) ( ) ( )i i i if d f c h d c   . -------------- (7) 

Now, consider the partition 1{ , }N
i i iQ P c d    . 

    , ,
1 , ,  or 

( ) ( ) ( ) ( )
i i i j i j

N

f i f i i i
i c d Q c c d d

d c f d f c 
      

          

 , , , , ,
1 , ,  or 

( ) ( ) ( ) ( ) ( )
i i i j i j

N

f i f i f i f i f
i c d Q c c d d

d c d c L    
      

            

1 , ,  or 

( ) ( ) ( ) ( )
i i i j i j

N

i i i i
i c d Q c c d d

f d f c f d f c 
      

        by inequality (2). 

Hence, 

            , ,
1 1

( ) ( ) ( ) ( )
N N

f i f i i i
i i

d c f d f c  
 

      . 

Now letting N tends to infinity we get, 

               , ,( ) ( ) ( ) ( )f i f i i i
i i

d c f d f c        .   --------------- (8) 

Note that   , , ,*( ( )) ( ) ( )f f i f i
i

m E d c       and so 

            ,*( ( )) ( ) ( )f i i i i
i i

m E f d f c h d c         , by inequality (7), 
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                             i i
i

h b a    , since [ , ] [ , ]i i i i
i i

c d a b  .  

Hence,    

                       ,* ( ( ))f
i i

i

m E
b a

h

 
   

                                              ,

1
* ( )fm E

k
    by inequality (6). 

As 1

N
   , by passing N to infinity, we get 

                              ,
,

*( ( )) 1
* ( )f

f

m E
m E

h k




 . 

Since h < k, this is possible only if  ,* ( ) 0fm E  . 

We shall now show that  ,* ( ) 0fm S  . 

We proceed almost exactly as for the set E. 

For 1

N
   , we pick a partition 0 1: nP u u u L      , 

such that  

                                1
1

( ) ( )
n

i i
i

M f u f u M 


    . 

We may remove the points in P from S for 1

N
   and for all positive integer N. 

We assume that S P  .   

Note that  , ( )f S   has finite outer measure.  Thus, there exists an open set V 

containing , ( )f S   such that 

                              ,( ) * ( )fm V m S   .  -------------------------  (9) 

Since ,f   is continuous for each e in S, there exists a 0   such that    

 , ,( ) , ( )f fe e V       .  By continuity of ,f   at e S, there exists  > 0 such 

that  



28 
 

               , , ,, ( ) ( ) , ( )f f fx e e A x e e V                 . 

Now, f has a derived number at e greater than 0.  Thus, we may pick arbitrary 
small closed interval, [r, s], such that e is one of the end points of the interval,  

[ , ]r s P  ,  , , , ,[ ( ), ( )] ( ) , ( )f f f fr s e e V            and 

                                     ( ) ( )
0

f s f r

s r





.  

Since we can choose 0   to be arbitrarily small, these arbitrary small intervals 

, ,[ ( ), ( )]f fr s    for e and for each e in S form a Vitali covering for , ( )f S  .  

Therefore, by the Vitali Covering Theorem, we may cover , ( )f S  almost 

everywhere by a countable mutually disjoint such closed intervals 

 , ,[ ( ), ( )]f i f ir s    such that [ , ]i ir s P  , ( ) ( ) 0i if s f r  and 

                            , , ,* ( ) ( ) ( )f f i f i
i

m S s r      .  ----------------------  (10) 

We deduce similarly as for inequality (8) that 

               , ,( ) ( ) ( ) ( ) ( ) ( )f i f i i i i i
i i i

s r f s f r f s f r             .  --------- (11) 

Now, we remove the end points of the collection  ,i ir s from S.  Since  ,i ir s is 

countable, this will not affect the conclusion of the theorem.  We now proceed 
similarly as for the case of the set E. We now assume that  ,i iS r s  .  Each 

point e in  ,i iS r s has a negative derived number.  Following the case for the 

set E, we cover , ( )f S  almost everywhere by a countable mutually disjoint such 

closed intervals  , ,[ ( ), ( )]f i f ip q    such that ( ) ( )i if p f q , [ , ] ( , )i i i i
i

p q r s , 

[ , ]i ip q P  , and 

                   , , ,* ( ) ( ) ( )f f i f i
i

m S q p       

                                  ( ) ( ) ( ) ( )i i i i
i i

f q f p f p f q        . ------------ (12) 

We deduce the last inequality as for inequality (8). 
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Since [ , ] [ , ]i i i i
i i

p q r s   and both collections are collections of disjoint 

intervals, as ( ) ( ) 0i if q f p  for each i, 

                        , ,( ) ( ) ( ) ( )i i f i f i
i i

f q f p n s n r      , 

where ,fn  is the negative variation of f as defined in the proof of Theorem 6. 

Note that by definition, as A  and inf A , , 0fn   and ,fn  is decreasing. 

As ( ) ( ) 0i if s f r  for each i, 

                          , ,( ) ( ) ( ) ( )i i f i f i
i i

f s f r p s p r      , 

where ,fp   is the positive variation of f as defined in the proof of Theorem 6. 

Note also that , 0fp   and ,fp  is increasing. 

Therefore, 

           , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i f i f i f i f i
i i i i

f p f q f s f r n r n s p s p r                     

               , , , , , ,( ) ( ) ( ) ( ) ( ) ( )f i f i f i f i f i f i
i i i i

p s n s p r n r s r               . 

Hence, 

                , ,( ) ( ) ( ) ( ) ( ) ( )i i i i f i f i
i i i

f p f q f s f r s r          . ------------- (13) 

Thus, it follows from inequalities (11) and (12) that 

                 , , , ,( ) ( ) ( ) ( )f i f i f i f i
i i

s r q p               

                   , ,( ) ( ) ( ) ( ) ( ) ( )i i i i f i f i
i i i

f s f r f p f q s r           . 

Hence,  , ,( ) ( ) 2f i f i
i

q p      .  Therefore,    

                     , , ,* ( ) ( ) ( ) 2f f i f i
i

m S q p        . 
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As  1

N
   , and so as N  ,  ,* ( ) 0fm S  . We conclude that  ,* ( ) 0fm S  . 

Next, we assert that  * ( ) 0m f E S  .  This is a consequence of the fact that for 

a function f of bounded variation, if H is a subset such that   * ( ) 0fm H  , then  

 * ( ) 0m f H  . 

We give a proof here for the case when inf( )A A  .  The proof for the general 

case is exactly the same. 

Suppose H is a subset of A such that   * ( ) 0fm H  . Then given any  > 0, there 

exists an open set U such that , ( )f H U  and ( )m U  .  Since U is open, U is a 

disjoint union of at most countable number of open intervals, i.e., n
n

U I  and

( ) ( )i
i

m U m I    .  Moreover, 1
, ( )f U H   .  Let  1

, ( )i f iA f I   . For any x, y 

in iA , there exist 1
,, ( )f ia b I   such that ( ) and ( )x f a y f b  .  Then 

                , ,( ) ( ) ( ) ( ) *( )f f ix y f a f b a b m I        . 

It follows that the diameter of iA  is less than or equal to *( )im I .  Hence, 

*( ) *( )i im A m I . 

Now,    1 1 1 1
, , , ,( ) ( ) ( ) ( )f f i f i f i

i i i

f H f U f I f I f I          
       

    
      . 

Therefore, 

                 1
,* ( ) * ( ) * *( )f i i i

i i i

m f H m f I m A m I       . 

Since  > 0 is arbitrary, we conclude that *( ( )) 0m f H  . This completes the 

proof of our assertion. 

We shall now show that ( ) 0m E S  . 

Since f is of bounded variation, by Theorem 8, f is differentiable almost 
everywhere.  Evidently, f is not differentiable at every point of S and so ( ) 0m S  .  
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At each point of e E , ,f   has a derived number greater than k.  We may 

assume that f is continuous at every point of E as the discontinuities of f form at 
most a denumerable set. 

Since we know that  , ( ) 0fm E  ,given  > 0, there exists an open set U such 

that , ( )f E U   and ( )m U  .  Since U is open, for each e in E, there exists 0   

such that     , ,( ) , ( )f fe e U       .  By continuity of ,f   at e E, there exists 

 > 0 such that  

               , , ,, ( ) ( ) , ( )f f fx e e A x e e U                 . 

Thus, as in the first part of the proof, at each point e, we can find arbitrary small 

closed intervals [x, y] with x  e y, x < y, x,yA such that 

               , , , , ,( ) ( ), ( ) ( ) , ( )f f f f fe x y e e                 

and , ,( ) ( )f fy x
k

y x

 



  . 

Thus, these arbitrary small intervals at each point of E and for all points in E 
form a Vitali covering for E. Therefore, there exists a countable sequence of 

pairwise disjoint closed intervals,   ,i ia b , covering E almost everywhere.  

 We claim that , ,( ), ( )f i f ia b     is a family of non-overlapping intervals.  If   

   1 1 2 2, ,a b a b  , then either 1 2 2 1 or  b a b a  .  Hence,  , 1 , 2( ) ( )f fb a    or 

, 2 , 1( ) ( )f fb a   , consequently, , 1 , 1( ), ( )f fa b      and , 2 , 2( ), ( )f fa b     are non-

overlapping. Therefore, 

     , ,

1
*( ) *([ , ] ( ) ( )i i i i f i f i

i i i

m E m a b b a b a
k
            

                       , , , ,

1 1
* ( ), ( ) * ( ), ( )f i f i f i f i

i i

m a b m a b
k k

              
      

                      1 1
*( )m U

k k
  . 

Since  is arbitrary, we conclude that *( ) 0m E   . 
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If inf( )A A  and sup( )L A A  , then take a sequence ( )nb in A such that nb L . 

A may not be bounded above and so L may be ∞.  

Apply the argument to [ , ]nA b  with the corresponding E and S in [ , ]nA b 

denoted by  and n nE S . Plainly,  and n n
n n

E E S S   .  It then follows by the 

continuity from below property of Lebesgue outer measure that the conclusion 
of the theorem holds for E and S since it holds for each and n nE S . 

Now if inf( )A A  , take a sequence ( )na in A such that na  .  We note that if 

A is not bounded below, then   .  Then apply the theorem to [ , )nA a  with 

na  as the anchor point for the variation function of f and the reference partition 

P.  If A is not bounded above and below, we can apply the theorem to each 
bounded part [ , 1]A n n   and conclude that the conclusion of the theorem holds.  

 

We are now ready to state and prove our main theorem. 

Theorem 15.   Suppose :f A is a finite-valued function of bounded 

variation on A.  Then there is a subset N of A such that  

                         ( ) ( ) ( ) 0fm N m f N m N    , 

where f  is any total variation of f defined using a point a in A and for each 

x A N  , ( )A Df x  and ( )A fD x  exist (finitely or infinitely) and that 

( ) ( )A f AD x Df x  . 

Proof.  

We note that for different anchor points for the total variation of f, the image of 
one of them is a translation of the other.  Thus, for different anchor points, say, 

a and b,     , ,( ) ( )f a f bm N m N  .  Moreover, if the derivative, ( )A fD x , exists, it 

is independent of the anchor point used for the definition of the total variation 
function f . 

For any rational numbers, 0 < h < k, let ,h kE   = {x  A: there is a derived number 

of f  at x greater than k and a derived number of f at x, whose absolute value is 

less than h.}  
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Let S = {x  A: there is a positive derived number and a negative derived 
number of f at x.}. 

Let  , : 0 ,  and  are rational numbers.h kE E h k h k     

Then, E = {x A:  there is a derived number of f   greater than the absolute 

value of a derived number of f at x.}. 

Let N E S  .  We have already shown in the proof of Theorem 14, that  

                     ( ) ( ) ( ) 0fm S m f S m S   . 

By Theorem 14, ,( ) 0h km E   , for each pair (h, k) of rational numbers with h < k.   

Therefore,   ,( ) : 0 ,  and  are rational numbers. 0h km E m E h k h k    . It follows 

that ( ) ( ) 0m N m E S    . Note that    ,
0 , ,  rational

( ) ( ) 0h k
h k h k

m f E m f E
 

  , since the 

set    ,( ) : 0 ,  and  are rational numbers.h kf E f E h k h k   is a countable union of 

sets ,( )h kf E  each of measure zero.  Hence,  ( ) 0m f E  .  Similarly, we can show 

that  ( ) 0fm E  . It follows that  ( ) 0fm N  . 

We now prove the remaining assertion of the theorem. 

Take any x in A – N.  Then  and x S x E  .  This means firstly, that f does not 
have both a negative and a positive derived number at x and secondly, that for 
any finite derived number, DV, of f  at x, DV Df for any derived number, Df, 

of f at x. 

Therefore, if f has a finite derived number DV at x, then  

                      inf :  is a derived number of   at DV Df Df f x .  ------------- (14) 

This statement is meaningful if  inf :  is a derived number of   at Df Df f x exists. 

Now, by definition of derived number of f , there exists a sequence  nx in A 

such that nx x , nx x  and 
( ) ( )

lim f n f

n
n

x x
DV

x x

 






 .  Hence, the sequence 

( ) ( )f n f

n

x x

x x

  
  

 is bounded.  Since for each n, 
( ) ( )( ) ( ) f n fn

n n

x xf x f x

x x x x

 


 
, the 
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sequence ( ) ( )n

n

f x f x

x x

 
  

 is also bounded. Therefore, by the Bolzano Weierstrass 

Theorem, it has a convergent subsequence 
( ) ( )

i

i

n

n

f x f x

x x

  
   

.  Let 

1

( ) ( )
lim i

i

n

i
n

f x f x
Df

x x





, then this is a derived number of f at x.  Hence statement 

(14) is meaningful. Note that the subsequence 
( ) ( )

i

i

f n f

n

x x

x x

   
   

 must converge to 

the same value DV.  Thus, we must have  

                              1Df DV .  

By (14), since x AN, 1DV Df  and so 1DV Df .  It follows that 

               1 inf :  is a derived number of   at DV Df Df Df f x   

and so  1 inf :  is a derived number of   at Df Df Df f x .  Therefore, since infimum 

is unique, there can be only one derived number for f  at x.  We have thus 

shown that if f has a finite derived number at x, then f is differentiable at x. It 

then follows that for any derived number Df of f at x,  ( )A fDf D x .  But  

 ( ) inf :  is a derived number of   at A fD x Df Df f x Df   . Hence, ( )A fD x Df   for 

any derived number of f at x.  Since x S , f does not have positive and negative 
derived number at x and so there can only be one derived number for f at x and 
so f is differentiable at x. Therefore, ( ) ( )A f AD x Df x  . 

Since, f  is an increasing function, either it has a finite derived number or it has 

only one derived number, equal to infinity. We have shown that if x  AN, and 

f  has a finite derived number, then f and f are both differentiable at x and 

( ) ( )A f AD x Df x  .  

Suppose now f  has an infinite derived number at x AN.  Since x E , any 

derived number Df of f at x must have Df   . Since x S , f cannot have 

derived number of opposite sign and so as any derived number of f at x must 
have its modulus equal to ∞, f can have only one derived number at x, either ∞ 
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or ∞. It follows that f is differentiable infinitely at x.  Thus, f  is differentiable 

infinitely at x and f is differentiable infinitely at x with ( ) ( )A f AD x Df x    . 

This completes the proof of Theorem 15. 

 

Definition 16.  

Suppose :f A is a finite-valued function and A is an arbitrary subset of   . 

The function f is said to satisfy a Lusin condition or is a Lusin function, if it 
maps sets of measure zero to sets of measure zero.  

 

Theorem 17.  Suppose :f A is a finite valued function and A is an arbitrary 

subset of  .  Suppose E is a subset of A, where f is differentiable at every x in 
E.  Then f is a Lusin function on E. 

Proof.  

Since f is differentiable at x in E, ( ) ( ) ( )A A ADf x D f x D f x
  . 

For each positive integer n, let  : ( )n AE x E Df x n   .  Then 
1

n
n

E E




   and 

1n nE E    . 

Suppose B is a subset of E of measure zero.  Then ( ) 0nm B E  .  Now for every 

point x in nE  , ( ) ( ) ( )A A An D f x Df x D f x n
     .  It follows from Theorem 10, 

Arbitrary Function, Limit Superior, Dini Derivative and Lebesgue Density 
Theorem that *( ( )) *( ) 0n nm f B E nm B E    .  Therefore, *( ( )) 0nm f B E  . 

Now,    
11

* ( ) * * ( )n n
nn

m f B m f B E m f B E
 



  
     

  
  and it follows from this 

that  * ( ) 0m f B  .  Thus, f is a Lusin function on E. 

 

Theorem 18.  Suppose :f A is a finite-valued function of bounded variation 

on A.  Let N be the subset of A given by Theorem 15 such that  
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                         ( ) ( ) ( ) 0fm N m f N m N    , 

where f  is any total variation of f defined using a point a in A and for each 

x A N  , ( )A Df x  and ( )A fD x  exist (finitely or infinitely) and that 

( ) ( )A f AD x Df x  .  Let E A N   be the subset  : ( )AE x A N Df x     .  

Then m(E) =0 and f is a Lusin function on ( )A E N  . 

Proof.   By Theorem 15, f is differentiable and has finite derivative at every 
point in ( )A E N  .  By Theorem 8, m(E) =0. By Theorem 17, f is a Lusin 

function on ( )A E N  . 

  

 

                            

 

 

  

    

 

 

                 


