Function of Bounded Variation on Arbitrary Subset and Johnson's Indicatrix

By Ng Tze Beng

In this article, we aim to prove that if a function of bounded variation maps a subset to a set of measure zero, then its total variation function will map the same set to a set of measure zero too. We use the same technique used as before in my article, *Functions of Bounded Variation and Johnson's Indicatrix*.

We use the notation and definitions of terms given in *Functions of Bounded* Variation and de La Vallée Poussin's Theorem and Arbitrary Function, Limit Superior, Dini Derivative and Lebesgue Density Theorem.

Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R} .

We shall assume initially that *A* is a bounded subset and extend the definition to arbitrary unbounded subset *A*.

Take $a_1, a_2 \in A$ with $a_1 < a_2$ and consider the closed interval $I = [a_1, a_2]$. Let $\tilde{I} = [a_1, a_2] \cap A$. Let $v_f = v_{f,a} : A \to \mathbb{R}$ be the total variation function of f on A. Then there exists a sequence, $\{P_n\}$, of partitions of the closed interval, I by points in A such that $P_n \subseteq P_{n+1} \subseteq \cdots$ and

$$\lim_{n\to\infty}\sum_{P_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| = \text{total variation of } f \text{ on } \tilde{I} = v_f(a_2) - v_f(a_1) = M,$$

where $P_n: a_1 = x_{0,n} < x_{1,n} < \dots < x_{k_n,n} = a_2$, $\sum_{P_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| = \sum_{j=1}^{k_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right|$.

Observe that by definition of the total variation over \tilde{I} , given any positive integer, *n*, there exists a partition, P_n , such that

$$M - \frac{1}{n} < \sum_{P_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| \le M$$

and there exists a partition, Q, such that

$$M - \frac{1}{n+1} < \sum_{Q} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| \le M .$$

We can then choose P_{n+1} to be the refinement $P_n \cup Q$. Starting with n = 1, we can then construct such a sequence $\{P_n\}$ and plainly, $\lim_{n\to\infty}\sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})| = M$.

For each partition, P_n , we can define an indicatrix as follows.

For $1 \le j \le k_n$, let $S_{j,n}$ be the closed intervals with $f(x_{j,n})$ and $f(x_{j-1,n})$ as end points, i.e., $S_{j,n} = [f(x_{j,n}), f(x_{j-1,n})]$ or $[f(x_{j-1,n}), f(x_{j,n})]$. Let $\chi(S_{j,n})$ be the characteristic function of $S_{j,n}$. Then, plainly, $\chi(S_{j,n})$ is Lebesgue integrable and

$$\int_{-\infty}^{\infty} \chi(S_{j,n}) = \left| f(x_{j,n}) - f(x_{j-1,n}) \right| \quad \text{for } 1 \le j \le k_n$$

For the partition, P_n , let $T_n = \sum_{j=1}^{k_n} \chi(S_{j,n})$. Then T_n is a measurable function. In particular,

$$\int_{-\infty}^{\infty} T_n(y) dy = \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} \chi(S_{j,n}) = \sum_{j=1}^{k_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| = \sum_{P_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right|.$$

Since P_{n+1} refines P_n , plainly, $T_{n+1} \ge T_n$. It follows that $\{T_n\}$ is an increasing sequence of non-negative measurable and integrable functions. We now define for this sequence of partitions, $\{P_n\}$ for \tilde{I} ,

$$T_{\tilde{I}} = T_{[a_1, a_2] \cap A} = \lim_{n \to \infty} T_n \,.$$

By the Monotone Convergence Theorem, the function $T_{\tilde{i}}$ is Lebesgue integrable and

Definition 1. We define the *indicatrix* of $f_{\tilde{i}}$, the restriction of f to $\tilde{I} = [a_1, a_2] \cap A$ to be $T_{\tilde{i}}$. Note that the function $T_{\tilde{i}}$ depends on the sequence of

partitions $\{P_n\}$ used to define it. Nevertheless, $T_{\tilde{i}}$ is unique up to a set of measure zero. That is to say, if $T_{\tilde{i}}$ is defined using another sequence of partitions, $\{Q_n\}$, then $T_{\tilde{i}} = T_{\tilde{i}}$ almost everywhere on $\tilde{I} = [a_1, a_2] \cap A$.

Lemma 2. With notation as above, $T_{\tilde{i}}$ is unique up to a set of measure zero.

Proof.

Denote $T_{\tilde{I},\{P_n\}}$ to be the indicatrix function defined by the sequence of partitions $\{P_n\}$ and $T_{\tilde{I},\{Q_n\}}$ to be the indicatrix function defined by the sequence of partitions $\{Q_n\}$. Let $\{R_n\}$ be the common refinement of $\{P_n\}$ and $\{Q_n\}$, with $R_n = P_n \cup Q_n$. Then $T_{\tilde{I},\{R_n\}} = \lim_{n \to \infty} T_{\tilde{I},R_n}$, where $T_{\tilde{I},R_n}$ is the function defined using the partition, R_n and

$$\int_{-\infty}^{\infty} T_{\tilde{I},\{R_n\}}(y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{\tilde{I},R_n}(y) dy = \lim_{n \to \infty} \sum_{R_n} |f(x_{j,n}) - f(x_{j-1,n})| = v_f(a_2) - v_f(a_1).$$

Since R_n is a refinement of both P_n and Q_n , $T_{\tilde{I},R_n} \ge T_{\tilde{I},P_n}$, $T_{\tilde{I},Q_n}$. Passing to the limit we have then $T_{\tilde{I},\{R_n\}} \ge T_{\tilde{I},\{P_n\}}$, $T_{\tilde{I},\{Q_n\}}$. We claim that $T_{\tilde{I},\{R_n\}} = T_{\tilde{I},\{P_n\}}$ almost everywhere on $\tilde{I} = [a_1, a_2] \cap A$. Suppose there exists a subset E of positive measure in $\tilde{I} = [a_1, a_2] \cap A$ such that $T_{\tilde{I},\{R_n\}} > T_{\tilde{I},\{P_n\}}$ then $\int_{-\infty}^{\infty} T_{\tilde{I},\{R_n\}}(y) dy > \int_{-\infty}^{\infty} T_{\tilde{I},\{P_n\}}(y) dy$. But $\int_{-\infty}^{\infty} T_{\tilde{I},\{R_n\}}(y) dy = \int_{-\infty}^{\infty} T_{\tilde{I},\{P_n\}}(y) dy = v_f(a_2) - v_f(a_1)$ give s a contradiction. Hence, we have that $T_{\tilde{I},\{R_n\}} = T_{\tilde{I},\{P_n\}}$ almost everywhere on \tilde{I} . Similarly, $T_{\tilde{I},\{R_n\}} = T_{\tilde{I},\{Q_n\}}$ almost everywhere on \tilde{I} . Therefore, $T_{\tilde{I},\{P_n\}} = T_{\tilde{I},\{Q_n\}}$ almost everywhere on \tilde{I} .

Johnson's Indicatrix

Definition 3.

Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a bounded subset of \mathbb{R} . Let $a = \inf A$ and $b = \sup A$. Then $A \subseteq [\inf A, \sup A] = [a, b]$.

Suppose $\inf A$ and $\sup A$ belongs to A. Then the indicatrix function T_A is given by Definition 1.

Suppose $a \notin A$ and $b \in A$. Take a sequence (a_n) in A such that $a_n \searrow a$. Define the indicatrix function on A

$$T_A = \lim_{n \to \infty} T_{[a_n, b] \cap A}.$$

Note that $\{T_{[a_n,b]\cap A}\}$ is an increasing sequence of functions, which are Lebesgue integrable. Moreover,

$$\int_{-\infty}^{\infty} T_A(y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{[a_n, b] \cap A}(y) dy = \lim_{n \to \infty} v_f(b) - v_f(a_n) = \text{the total variation of } f \text{ on } A.$$

Note that $v_f(b) - v_f(a_n)$ does not depend on the anchor point used to define the variation function. Note that T_A does not depend on the sequence (a_n) . If (a_n) is another sequence in A such that $a_n \searrow a$, then we can find a subsequence (a_{n_k}) such that $a_{n_k} < a_n$. Observe that since (a_{n_k}) is a subsequence of (a_n) ,

$$\lim_{n\to\infty} T_{[a_n,b]\cap A} = \lim_{k\to\infty} T_{[a_n,b]\cap A}$$
 almost everywhere on A.

Therefore, $\lim_{n\to\infty} T_{[a_n,b]\cap A} = \lim_{k\to\infty} T_{[a_n,b]\cap A} \ge \lim_{k\to\infty} T_{[a_k,b]\cap A}$ almost everywhere on *A*. By the same reasoning we can show that $\lim_{n\to\infty} T_{[a_n,b]\cap A} \ge \lim_{k\to\infty} T_{[a_n,b]\cap A}$ almost everywhere on *A*. Hence, $\lim_{n\to\infty} T_{[a_n,b]\cap A} = \lim_{n\to\infty} T_{[a_n,b]\cap A}$ almost everywhere on *A*. Thus, $T_A = \lim_{n\to\infty} T_{[a_n,b]\cap A}$ is defined.

Suppose $a \in A$ and $b \notin A$. Take a sequence (b_n) in A such that $b_n \nearrow b$. Define the indicatrix function on A

$$T_A = \lim_{n \to \infty} T_{[a, b_n] \cap A} \, .$$

Note that

$$\int_{-\infty}^{\infty} T_A(y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{[a,b_n] \cap A}(y) dy = \lim_{n \to \infty} v_f(b_n) - v_f(a) = \text{the total variation of } f \text{ on } A.$$

Suppose $a \notin A$ and $b \notin A$. Take a sequence (a_n) in A such that $a_n \searrow a$ and a sequence (b_n) in A such that $b_n \nearrow a$. Consider $(a, b_n] \cap A$. We have just defined

$$T_{(a,b_n] \cap A} = \lim_{k \to \infty} T_{[a_k,b_n] \cap A} \text{ and that}$$

$$\int_{-\infty}^{\infty} T_{(a,b_n] \cap A}(y) dy = \lim_{k \to \infty} \int_{-\infty}^{\infty} T_{[a_k,b_n] \cap A}(y) dy = \lim_{k \to \infty} v_f(b_n) - v_f(a_k) = \text{total variation of } f \text{ on}$$

$$(a,b_n] \cap A \text{ . Define } T_{(a,b) \cap A} = \lim_{n \to \infty} T_{(a,b_n] \cap A} \text{ . Then}$$

$$\int_{-\infty}^{\infty} T_A(y) dy = \int_{-\infty}^{\infty} T_{(a,b) \cap A}(y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{(a,b_n] \cap A}(y) dy = \lim_{n \to \infty} \left(v_f(b_n) - \lim_{k \to \infty} v_f(a_k) \right)$$

= total variation of
$$f$$
 on $(a,b) \cap A = A$.

Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is an unbounded subset of \mathbb{R} . If it is not bounded above but bounded below, then we can take a sequence (b_n) in *A* such that $b_n \nearrow \infty$ and define the indicatrix function T_A as in the above procedure and $\int_{-\infty}^{\infty} T_A(y) dy =$ total variation of *f* on *A*. Similarly, we can define T_A when *A* is not bounded below but bounded above. Finally, we can define T_A when *A* is not bounded above and below in a similar fashion. Moreover, $\int_{-\infty}^{\infty} T_A(y) dy =$ total variation of *f* on *A*.

The nest result is an immediate consequence of the definition of the indicatrix function.

Lemma 4. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Suppose $a, b \in A$ and a < b. Let $\tilde{I} = [a, b] \cap A$. Suppose

$$y \notin \left[\inf \left\{ f(x) : x \in \tilde{I} \right\}, \sup \left\{ f(x) : x \in \tilde{I} \right\} \right].$$

Then $T_{\tilde{i}}(y) = 0$.

Lemma 5. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation. Suppose $\{I_i\}$ is a sequence of pairwise disjoint closed intervals with end points in *A*. Then $T_A(y) \ge \sum_i T_{\tilde{I}_i}(y)$ almost everywhere on *A*.

Proof.

We prove the inequality for a finite number of the sequence $\{I_j\}$. Note that these are pairwise disjoint subsets. Let $\tilde{I}_j = I_j \cap A$. Take *k* of these sets, $\tilde{I}_1, \tilde{I}_2, \dots, \tilde{I}_k$. Suppose $I_j = [a_j, b_j]$.

Let $a = \min\{a_1, a_2, \dots, a_k\}$ and $b = \max\{b_1, b_2, \dots, b_k\}$ and I = [a, b]. Take typical sequences of partitions for $\tilde{I} = [a, b] \cap A$, and $\tilde{I}_1, \tilde{I}_2, \dots, \tilde{I}_k$ for the definition of the indicatrix functions. Refine the sequence of partitions for $\tilde{I} = [a, b] \cap A$ to include all the partitions for $\tilde{I}_1, \tilde{I}_2, \dots, \tilde{I}_k$. Denote the new sequence of partitions for \tilde{I} by $\{R_n\}$ and the sequences of partitions for $\tilde{I}_1, \tilde{I}_2, \dots, \tilde{I}_k$ by $\{P_{1,n}\}, \{P_{2,n}\}, \dots, \{P_{k,n}\}$. Observe that the members of the collection of sequences are each collection of disjoint sets, i.e., for each integer n, $\{P_{1,n}, P_{2,n}, \dots, P_{k,n}\}$ is a collection of disjoint sets. Hence, $T_{\tilde{I},R_n}(y) \ge \sum_{j=1}^k T_{I_j,P_{j,n}}(y)$. Then passing to the limit we have then $T_{\tilde{I},\{R_n\}}(y) \ge \sum_{j=1}^k T_{I_j,\{P_{j,n}\}}(y)$ almost everywhere on \tilde{I} . Therefore, by Lemma 4, $T_A(y) \ge \lim_{k \to \infty} \sum_{j=1}^k T_{I_j,\{P_{j,n}\}}(y) = \sum_{j=1}^\infty T_{I_j,\{P_{j,n}\}}(y)$ almost everywhere on A. It follows that

Dropping the reference to the partitions used to defined the indicatrix functions, we obtain, $T_A(y) \ge \sum_{j=1}^{\infty} T_{I_j}(y)$ almost everywhere on *A*.

The next result gives a bound to the image, under the total variation function, of the points of A in a closed interval, with end points in A, by the integral of the indicatrix function. This is a crucial inequality used to limit the bound of the image of the total variation function.

Lemma 6. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Suppose $a, b \in A$ and a < b. Let $\tilde{I} = [a,b] \cap A$. Then

$$m^*(v_f(\tilde{I})) = m^*(v_f([a,b] \cap A)) \leq \int_{-\infty}^{\infty} T_{\tilde{I}}(y) dy,$$

where m^* is the Lebesgue outer measure.

Proof.

$$m^{*}(v_{f}(\tilde{I})) = m^{*}(v_{f}([a,b] \cap A)) \leq v_{f}(b) - v_{f}(a) = \int_{-\infty}^{\infty} T_{\tilde{I}}(y) dy.$$

Lemma 7. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Suppose $\{I_j\}$ is a sequence of pairwise disjoint closed intervals with end points in *A*. Let $I_j = [a_j, b_j], a_j < b_j, a_j, b_j \in A$. Let $S = \bigcup_j I_j$,

 $\tilde{I}_j = [a_j, b_j] \cap A$ and $S = \left(\bigcup_j I_j\right) \cap A = \bigcup_j \tilde{I}_j$. Suppose *E* is a measurable subset of \mathbb{R} such that $\left[\inf\left\{f(x): x \in I_j \cap A\right\}, \sup\left\{f(x): x \in I_j \cap A\right\}\right\} = \left[\inf f(\tilde{I}_j), \sup f(\tilde{I}_j)\right] \subseteq E$ for each integer *j*. Then

$$m^* \Big(v_f(S) \Big) = m^* \Big(v_f(S \cap A) \Big) \le \int_E \sum_j T_{\tilde{I}_j}(y) dy \le \int_E T_A(y) dy$$

Proof.

$$m^{*}(v_{f}(S)) \leq \sum_{j} m^{*}(v_{f}(\tilde{I}_{j})) \leq \sum_{j} \int_{-\infty}^{\infty} T_{\tilde{I}_{j}}(y) dy, \text{ by Lemma6},$$

$$\leq \sum_{j} \int_{E} T_{\tilde{I}_{j}}(y) dy, \text{ by Lemma 4},$$

$$\operatorname{since}\left[\inf\left\{f(x) : x \in I_{j} \cap A\right\}, \sup\left\{f(x) : x \in I_{j} \cap A\right\}\right] = \left[\inf f(\tilde{I}_{j}), \sup f(\tilde{I}_{j})\right] \subseteq E,$$

$$\leq \int_{E} T_{A}(y) dy, \text{ by Lemma 5}.$$

The next result is useful for the approach to using finite union of subsets before passing to infinite union of subsets.

Lemma 8. Suppose $\{A_i\}$ is a sequence of subsets of \mathbb{R} , uniformly bounded. Then there exists an integer *k* such that

$$m^*\left(\bigcup_{n=1}^k A_n\right) \ge \frac{1}{2}m^*\left(\bigcup_{n=1}^\infty A_n\right),$$

where m^* is the Lebesgue outer measure.

Proof. Note that $\bigcup_{n=1}^{\infty} A_n$ is bounded and so $m^* \left(\bigcup_{n=1}^{\infty} A_n \right)$ is finite. If $m^* \left(\bigcup_{n=1}^{\infty} A_n \right) = 0$, then we have nothing to prove since both sides of the inequality are zero.

Suppose now $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) > 0$. Then by the continuity from below property of Lebesgue outer measure,

$$\lim_{j\to\infty} m^* \left(\bigcup_{n=1}^j A_n \right) = m^* \left(\bigcup_{n=1}^\infty A_n \right).$$

Therefore, there exists an integer k > 0, such that for all $j \ge k$, we have that

$$\left| m^* \left(\bigcup_{n=1}^j A_n \right) - m^* \left(\bigcup_{n=1}^\infty A_n \right) \right| < \frac{1}{2} m^* \left(\bigcup_{n=1}^\infty A_n \right).$$

Hence, $m^* \left(\bigcup_{n=1}^k A_n \right) > m^* \left(\bigcup_{n=1}^\infty A_n \right) - \frac{1}{2} m^* \left(\bigcup_{n=1}^\infty A_n \right) = \frac{1}{2} m^* \left(\bigcup_{n=1}^\infty A_n \right)$

It is easier to prove the result we stated at the outset on set where the function is continuous. We formulate the special case in the next theorem.

Theorem 9. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Suppose *E* is a subset of *A* such that *f* is continuous at every point of *E* and that the measure of its image under *f*, m(f(E)), is zero. Then $m(v_f(E)) = 0$.

Proof.

We may assume that every point of E is a two-sided limit point of A because isolated points and one-sided only limit points constitute at most a denumerable set.

Since m(f(E)) = 0 and f(E) is bounded, for any positive integer, *n*, there exists a bounded open set U_n such that $f(E) \subseteq U_n$ and $m(U_n) \le \frac{1}{n}$.

Take $e \in E$. Then $f(e) \in U_n$ and so there exists $\varepsilon_e > 0$ such that $(f(e) - \varepsilon_e, f(e) + \varepsilon_e) \subseteq U_n$. As f is continuous at e, there exists $\delta_e > 0$ such that $f((e - \delta_e, e - \delta_e) \cap A) \subseteq \left(f(e) - \frac{\varepsilon_e}{2}, f(e) + \frac{\varepsilon_e}{2}\right)$. Since e is a two-sided limit point of A, there exists $a_e \in (e - \frac{\delta_e}{2}, e) \cap A$ and $b_e \in (e, e + \frac{\delta_e}{2}) \cap A$. Let $I_e = [a_e, b_e]$. Then $f(I_e \cap A) \subseteq \left(f(e) - \frac{\varepsilon_e}{2}, f(e) + \frac{\varepsilon_e}{2}\right) \subseteq U_n$. Therefore, $\left[\inf f(I_e \cap A), \sup f(I_e \cap A)\right] \subseteq \left[f(e) - \frac{\varepsilon_e}{2}, f(e) + \frac{\varepsilon_e}{2}\right] \subseteq (f(e) - \varepsilon_e, f(e) + \varepsilon_e) \subseteq U_n$.

The collection $\Gamma = \{(a_e, b_e) : e \in E\}$ is an open cover for *E*. Therefore, by Lindelöf Theorem, Γ has a countable subcover, $\mathscr{C} = \{ \text{int } I_{e_i} ; i = 1, 2, \cdots \}.$

We claim that

$$m^*\left(\nu_f\left(\bigcup_{i=1}^{\infty}I_{e_i}\cap A\right)\right) = m^*\left(\nu_f\left(\bigcup_{i=1}^{\infty}\tilde{I}_{e_i}\right)\right) \le 2\int_{U_n}T_A(y)dy, \text{ where } \tilde{I}_{e_i} = I_{e_i}\cap A. \dots (*)$$

By Lemma 8, $\frac{1}{2}m^*\left(v_f\left(\bigcup_{i=1}^{\infty}\tilde{I}_{e_i}\right)\right) \le m^*\left(v_f\left(\bigcup_{i=1}^{k}\tilde{I}_{e_i}\right)\right)$ for some positive integer k.

Thus,

Note that $\bigcup_{i=1}^{k} I_{e_i}$ is a finite collection of closed intervals. Hence $\bigcup_{i=1}^{k} I_{e_i}$ is a finite disjoint collection of closed intervals, say, C_1, C_2, \dots, C_J . Each C_j is a union of a finite number of closed intervals in $\{I_{e_i} : i = 1, 2, \dots, k\}$, say, I_1, I_2, \dots, I_{n_j} , where the union $\bigcup \{I_1, I_2, \dots, I_{n_j}\}$ cannot be partitioned into two disjoint collections. It follows that the corresponding collections

 $\left\{\left[\inf f(I_i \cap A), \sup f(I_i \cap A)\right], i = 1, 2, \cdots, n_j\right\},\$

also have the property that their union cannot be partitioned into two disjoint collections. We deduce this as follows. Suppose

$$\left[\inf f(I_1 \cap A), \sup f(I_1 \cap A)\right] \cap \left[\inf f(I_2 \cap A), \sup f(I_2 \cap A)\right] = \emptyset.$$

Then, $(I_1 \cap A) \cap (I_2 \cap A) = \emptyset$, for if $(I_1 \cap A) \cap (I_2 \cap A)$ were to be non- empty then there exists $a \in (I_1 \cap A) \cap (I_2 \cap A)$ and

 $f(a) \in \left[\inf f(I_1 \cap A), \sup f(I_1 \cap A)\right] \text{ and } f(a) \in \left[\inf f(I_2 \cap A), \sup f(I_2 \cap A)\right],$

contradicting that $[\inf f(I_1 \cap A), \sup f(I_1 \cap A)] \cap [\inf f(I_2 \cap A), \sup f(I_2 \cap A)] = \emptyset$.

Because each $[\inf f(I_j \cap A), \sup f(I_j \cap A)] \subseteq U_n$, it follows that

$$\left[\min_{1\leq i\leq n_j}\left\{\inf f(\tilde{I}_i)\right\}, \max_{1\leq i\leq n_j}\left\{\sup f(\tilde{I}_i)\right\}\right] \subseteq \left[\inf f(C_j \cap A), \sup f(C_j \cap A)\right] \subseteq U_n.$$

Hence, by Lemma 7,

$$m^*\left(v_f\left(\bigcup_{i=1}^k \tilde{I}_{e_i}\right)\right) = m^*\left(v_f\left(\bigcup_{i=1}^J C_i\right)\right) \leq \int_{U_n} T_A(y) dy.$$

Therefore, it follows from inequality (1) that

$$m^*\left(\nu_f\left(\bigcup_{i=1}^{\infty}\tilde{I}_{e_i}\right)\right) \leq 2m^*\left(\nu_f\left(\bigcup_{i=1}^{k}\tilde{I}_{e_i}\right)\right) \leq 2\int_{U_n}T_A(y)dy.$$

This proves the claim.

Since
$$E \subseteq \left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_i}\right), m^*\left(v_f(E)\right) \leq m^*\left(v_f\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_i}\right)\right) \leq 2\int_{U_n} T_A(y) dy$$
.

Since $m(U_n) \to 0$, $\lim_{n \to \infty} \int_{U_n} T_A(y) dy = 0$. It follows that $m^*(v_f(E)) = 0$.

This completes the proof of Theorem 9.

Finally, we state our main theorem as follows.

Theorem 10. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Suppose *E* is a subset of *A* such that m(f(E)) is zero. Then $m(v_f(E)) = 0$.

Proof. By Theorem 4 of *Functions of Bounded Variation and de La Vallée Poussin's Theorem*, the set *D* of discontinuities of *f* is at most denumerable. It follows that $m(f(D)) = m(v_f(D)) = 0$. Since m(f(E)) = 0, m(f(E-D)) = 0. Note that *f* is continuous at every point of E - D. Therefore, by Theorem 9, $m(v_f(E-D)) = 0$. Hence, $m^*(v_f(E)) \le m^*(v_f(E-D)) + m^*(v_f(E \cap D)) = 0 + 0 = 0$. It follows that $m(v_f(E)) = 0$.

Corollary 11. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Suppose *E* is a subset of *A*. Then m(f(E)) = 0 if, and only if, $m(v_f(E)) = 0$.

Proof. If m(f(E)) = 0, then by Theorem 11 $m(v_f(E)) = 0$. If $m(v_f(E)) = 0$, then by Theorem 16 of *Functions of Bounded Variation and Johnson's Indicatrix*, m(f(E)) = 0. Note that this theorem applies to arbitrary function of bounded variation as the same proof is valid for the general function of bounded variation.

Theorem 12. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and *A* is a subset of \mathbb{R} . Then *f* is a Lusin function if, and only if, its total variation function, v_f , is a Lusin function.

Proof. Suppose *E* is a subset of *A* of zero measure. Then by Corollary 11, m(f(E)) = 0 if, and only if, $m(v_f(E)) = 0$. Thus, *f* maps a null set to a null set if, and only if, v_f does the same. Hence, Theorem 12 follows.

Theorem 13. Suppose *A* is a measurable closed and bounded subset of \mathbb{R} or an interval and $f: A \to \mathbb{R}$ is a finite valued function of bounded variation on *A*. Then *f* is absolutely continuous, if and only if, $v_f: A \to \mathbb{R}$ is absolutely continuous on *A*.

Proof. By Theorem 13 of *Functions of Bounded Variation and de La Vallée Poussin's Theorem*, *f* is continuous if, and only if, v_f is continuous. So, we assume that *f* is a continuous function of bounded variation. Since $|f(y) - f(x)| \le |v_f(y) - v_f(x)|$ for any $x, y \in A$, it follows that if v_f is absolutely continuous, then *f* is absolutely continuous.

Note that the total variation function, v_f , of *f* is a bounded increasing function and so is of bounded variation.

Suppose now f is absolutely continuous. By Lemma 3 of Absolutely Continuous Functions on Arbitrary Domain and Function of Bounded variation, f is a Lusin function. By Theorem 10, since f is of bounded variation, v_f is also a Lusin Function.

If A is closed and bounded, by Theorem 4 of Absolutely Continuous Functions on Arbitrary Domain and Function of Bounded variation, v_f is

absolutely continuous

Suppose A is an interval. Since the total variation function, v_f , is of bounded variation, continuous and a Lusin function, by Theorem 15 of *Absolutely Continuous Functions on Arbitrary Domain and Function of Bounded variation*, v_f is absolutely continuous.