In this article, we aim to prove that if a function of bounded variation maps a subset to a set of measure zero, then its total variation function will map the same set to a set of measure zero too. We use the same technique used as before in my article, *Functions of Bounded Variation and Johnson’s Indicatrix*.

We use the notation and definitions of terms given in *Functions of Bounded Variation and de La Vallée Poussin’s Theorem and Arbitrary Function, Limit Superior, Dini Derivative and Lebesgue Density Theorem*.

Suppose \(f : A \to \mathbb{R} \) is a function of bounded variation and \(A \) is a subset of \(\mathbb{R} \).

We shall assume initially that \(A \) is a bounded subset and extend the definition to arbitrary unbounded subset \(A \).

Take \(a_1, a_2 \in A \) with \(a_1 < a_2 \) and consider the closed interval \(I = [a_1, a_2] \). Let \(\tilde{I} = [a_1, a_2] \cap A \). Let \(\nu_f = \nu_{f, \tilde{I}} : A \to \mathbb{R} \) be the total variation function of \(f \) on \(A \).

Then there exists a sequence, \(\{P_n\} \), of partitions of the closed interval, \(\tilde{I} \) by points in \(A \) such that \(P_n \subseteq P_{n+1} \subseteq \cdots \) and

\[
\lim_{n \to \infty} \sum_{\tilde{P}_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| = \text{total variation of } f \text{ on } \tilde{I} = \nu_f(a_2) - \nu_f(a_1) = M,
\]

where \(P_n : a_1 = x_{0,n} < x_{1,n} < \cdots < x_{k_n,n} = a_2 \),

\[
\sum_{\tilde{P}_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| = \sum_{j=1}^{k_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right|.
\]

Observe that by definition of the total variation over \(\tilde{I} \), given any positive integer, \(n \), there exists a partition, \(P_n \), such that

\[
M - \frac{1}{n} \sum_{\tilde{P}_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| \leq M
\]

and there exists a partition, \(Q \), such that
\[M - \frac{1}{n+1} < \sum_{Q} |f(x_{j,n}) - f(x_{j-1,n})| \leq M. \]

We can then choose \(P_{n+1} \) to be the refinement \(P_n \cup Q \). Starting with \(n = 1 \), we can then construct such a sequence \(\{P_n\} \) and plainly, \(\lim_{n \to \infty} \sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})| = M \).

For each partition, \(P_n \), we can define an indicatrix as follows.

For \(1 \leq j \leq k_n \), let \(S_{j,n} \) be the closed intervals with \(f(x_{j,n}) \) and \(f(x_{j-1,n}) \) as end points, i.e., \(S_{j,n} = [f(x_{j,n}), f(x_{j-1,n})] \) or \([f(x_{j-1,n}), f(x_{j,n})] \). Let \(\chi(S_{j,n}) \) be the characteristic function of \(S_{j,n} \). Then, plainly, \(\chi(S_{j,n}) \) is Lebesgue integrable and

\[\int_{-\infty}^{\infty} \chi(S_{j,n}) = |f(x_{j,n}) - f(x_{j-1,n})| \quad \text{for} \quad 1 \leq j \leq k_n \]

For the partition, \(P_n \), let \(T_n = \sum_{j=1}^{k_n} \chi(S_{j,n}) \). Then \(T_n \) is a measurable function. In particular,

\[\int_{-\infty}^{\infty} T_n(y) dy = \sum_{j=1}^{k_n} \int_{-\infty}^{\infty} \chi(S_{j,n}) = \sum_{j=1}^{k_n} |f(x_{j,n}) - f(x_{j-1,n})| = \sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})| \).

Since \(P_{n+1} \) refines \(P_n \), plainly, \(T_{n+1} \geq T_n \). It follows that \(\{T_n\} \) is an increasing sequence of non-negative measurable and integrable functions. We now define for this sequence of partitions, \(\{P_n\} \) for \(\tilde{I} \),

\[T_{\tilde{I}} = T_{[a_1,a_2] \cap A} = \lim_{n \to \infty} T_n. \]

By the Monotone Convergence Theorem, the function \(T_{\tilde{I}} \) is Lebesgue integrable and

\[\int_{-\infty}^{\infty} T_{\tilde{I}}(y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_n(y) dy = \lim_{n \to \infty} \sum_{P_n} |f(x_{j,n}) - f(x_{j-1,n})| = \text{total variation of over } \tilde{I}, \]

\[= v_f(a_2) - v_f(a_1). \]

\[\text{-----------------------------}(1) \]

Definition 1. We define the *indicatrix* of \(f \), the restriction of \(f \) to \(\tilde{I} = [a_1, a_2] \cap A \) to be \(T_{\tilde{I}} \). Note that the function \(T_{\tilde{I}} \) depends on the sequence of
partitions \(\{P_n\} \) used to define it. Nevertheless, \(T_j \) is unique up to a set of measure zero. That is to say, if \(\tilde{T}_j \) is defined using another sequence of partitions, \(\{Q_n\} \), then \(\tilde{T}_j = T_j \) almost everywhere on \(\tilde{I} = [a_1, a_2] \cap A \).

Lemma 2. With notation as above, \(T_j \) is unique up to a set of measure zero.

Proof.

Denote \(T_{I,(P_n)} \) to be the indicatrix function defined by the sequence of partitions \(\{P_n\} \) and \(T_{I,(Q_n)} \) to be the indicatrix function defined by the sequence of partitions \(\{Q_n\} \). Let \(\{R_n\} \) be the common refinement of \(\{P_n\} \) and \(\{Q_n\} \), with \(R_n = P_n \cup Q_n \). Then \(T_{I,(R_n)} = \lim_{n \to \infty} T_{I,(P_n)} \), where \(T_{I,(R_n)} \) is the function defined using the partition, \(R_n \) and

\[
\int_{\infty}^{\infty} T_{I,(R_n)}(y)dy = \lim_{n \to \infty} \int_{\infty}^{\infty} T_{I,(P_n)}(y)dy = \lim_{n \to \infty} \sum_{R_n} \left| f(x_{j,n}) - f(x_{j-1,n}) \right| = \nu_f(a_2) - \nu_f(a_1).
\]

Since \(R_n \) is a refinement of both \(P_n \) and \(Q_n \), \(T_{I,(P_n)} \geq T_{I,(R_n)}, T_{I,(Q_n)} \). Passing to the limit we have then \(T_{I,(R_n)} \geq T_{I,(P_n)}, T_{I,(Q_n)} \). We claim that \(T_{I,(R_n)} = T_{I,(P_n)} \) almost everywhere on \(\tilde{I} = [a_1, a_2] \cap A \). Suppose there exists a subset \(E \) of positive measure in \(\tilde{I} = [a_1, a_2] \cap A \) such that \(T_{I,(R_n)} > T_{I,(P_n)} \), then \(\int_{\infty}^{\infty} T_{I,(R_n)}(y)dy > \int_{\infty}^{\infty} T_{I,(P_n)}(y)dy \). But

\[
\int_{\infty}^{\infty} T_{I,(R_n)}(y)dy = \int_{\infty}^{\infty} T_{I,(P_n)}(y)dy = \nu_f(a_2) - \nu_f(a_1)
\]

gives a contradiction. Hence, we have that \(T_{I,(R_n)} = T_{I,(P_n)} \) almost everywhere on \(\tilde{I} \). Similarly, \(T_{I,(R_n)} = T_{I,(Q_n)} \) almost everywhere on \(\tilde{I} \). Therefore, \(T_{I,(P_n)} = T_{I,(Q_n)} \) almost everywhere on \(\tilde{I} \).

Johnson’s Indicatrix

Definition 3.

Suppose \(f: A \to \mathbb{R} \) is a function of bounded variation and \(A \) is a bounded subset of \(\mathbb{R} \). Let \(a = \inf A \) and \(b = \sup A \). Then \(A \subseteq [\inf A, \sup A] = [a, b] \).
Suppose \(\inf A \) and \(\sup A \) belongs to \(A \). Then the indicatrix function \(T_A \) is given by Definition 1.

Suppose \(a \notin A \) and \(b \in A \). Take a sequence \((a_n) \) in \(A \) such that \(a_n \searrow a \). Define the indicatrix function on \(A \)

\[
T_A = \lim_{n \to \infty} T_{[a_n, b]} \cap A.
\]

Note that \(\{T_{[a_n, b]} \cap A\} \) is an increasing sequence of functions and so is Lebesgue integrable. Moreover,

\[
\int_{-\infty}^{\infty} T_A(y) \, dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{[a_n, b]} \cap A(y) \, dy = \lim_{n \to \infty} \nu_f(b) - \nu_f(a) = \text{the total variation of } f \text{ on } A.
\]

Note that \(\nu_f(b) - \nu_f(a) \) does not depend on the anchor point used to define the variation function. Note that \(T_A \) does not depend on the sequence \((a_n) \). If \((\tilde{a}_n) \) is another sequence in \(A \) such that \(\tilde{a}_n \searrow a \), then we can find a subsequence \((\tilde{a}_{n_k}) \) such that \(\tilde{a}_{n_k} < a_n \). Observe that since \((\tilde{a}_{n_k}) \) is a subsequence of \((\tilde{a}_n) \),

\[
\lim_{n \to \infty} T_{[\tilde{a}_n, b]} \cap A = \lim_{k \to \infty} T_{[\tilde{a}_{n_k}, b]} \cap A \quad \text{almost everywhere on } A.
\]

Therefore, \(\lim_{n \to \infty} T_{[\tilde{a}_n, b]} \cap A \geq \lim_{k \to \infty} T_{[\tilde{a}_{n_k}, b]} \cap A \) almost everywhere on \(A \). By the same reasoning we can show that \(\lim_{n \to \infty} T_{[a_n, b]} \cap A \geq \lim_{k \to \infty} T_{[\tilde{a}_n, b]} \cap A \) almost everywhere on \(A \). Hence, \(\lim_{n \to \infty} T_{[a_n, b]} \cap A = \lim_{k \to \infty} T_{[\tilde{a}_n, b]} \cap A \) almost everywhere on \(A \). Thus, \(T_A = \lim_{n \to \infty} T_{[a_n, b]} \cap A \) is defined.

Suppose \(a \in A \) and \(b \notin A \). Take a sequence \((b_n) \) in \(A \) such that \(b_n \nearrow b \). Define the indicatrix function on \(A \)

\[
T_A = \lim_{n \to \infty} T_{[a_n, b_n]} \cap A.
\]

Note that

\[
\int_{-\infty}^{\infty} T_A(y) \, dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{[a_n, b_n]} \cap A(y) \, dy = \lim_{n \to \infty} \nu_f(b) - \nu_f(a) = \text{the total variation of } f \text{ on } A.
\]

Suppose \(a \notin A \) and \(b \notin A \). Take a sequence \((a_n) \) in \(A \) such that \(a_n \searrow a \) and a sequence \((b_n) \) in \(A \) such that \(b_n \nearrow a \). Consider \((a_n, b_n] \cap A \). We have just defined
\[T_{(a,b)\cap d} = \lim_{k \to \infty} T_{[a_k,b_k] \cap d} \] and that
\[\int_{-\infty}^{\infty} T_{(a,b)\cap d} (y) dy = \lim_{k \to \infty} \int_{-\infty}^{\infty} T_{[a_k,b_k] \cap d} (y) dy = \lim_{k \to \infty} \nu_f (b_k) - \nu_f (a_k) = \text{total variation of } f \text{ on } (a,b) \cap A. \]
Define \(T_{(a,b)\cap d} = \lim_{n \to \infty} T_{(a,b)\cap d} \). Then
\[\int_{-\infty}^{\infty} T_{d} (y) dy = \int_{-\infty}^{\infty} T_{(a,b)\cap d} (y) dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} T_{[a_k,b_k] \cap d} (y) dy = \lim_{n \to \infty} \left(\nu_f (b_k) - \nu_f (a_k) \right) \]
\[= \text{total variation of } f \text{ on } (a,b) \cap A = A. \]

Suppose \(f : A \to \mathbb{R} \) is a function of bounded variation and \(A \) is an unbounded subset of \(\mathbb{R} \). If it is not bounded above but bounded below, then we can take a sequence \((b_n) \) in \(A \) such that \(b_n \nearrow \infty \) and define the indicatrix function \(T_d \) as in the above procedure and \(\int_{-\infty}^{\infty} T_{d} (y) dy = \text{total variation of } f \text{ on } A. \) Similarly, we can define \(T_d \) when \(A \) is not bounded below but bounded above. Finally, we can define \(T_d \) when \(A \) is not bounded above and below in a similar fashion. Moreover, \(\int_{-\infty}^{\infty} T_{d} (y) dy = \text{total variation of } f \text{ on } A. \)

The next result is an immediate consequence of the definition of the indicatrix function.

Lemma 4. Suppose \(f : A \to \mathbb{R} \) is a function of bounded variation and \(A \) is a subset of \(\mathbb{R} \). Suppose \(a, b \in A \) and \(a < b \). Let \(I = [a,b] \cap A \). Suppose
\[y \notin \left[\inf \{ f(x) : x \in I \}, \sup \{ f(x) : x \in I \} \right]. \]
Then \(T_I (y) = 0. \)

Lemma 5. Suppose \(f : A \to \mathbb{R} \) is a function of bounded variation. Suppose \(\{ I_j \} \) is a sequence of pairwise disjoint closed intervals with end points in \(A \). Then \(T_d (y) \geq \sum_j T_{I_j} (y) \) almost everywhere on \(A \).

Proof.
We prove the inequality for a finite number of the sequence \(\{I_j\} \). Note that these are pairwise disjoint subsets. Let \(\tilde{I}_j = I_j \cap A \). Take \(k \) of these sets, \(\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_k \). Suppose \(I_j = [a_j, b_j] \).

Let \(a = \min\{a_1, a_2, \ldots, a_k\} \) and \(b = \max\{b_1, b_2, \ldots, b_k\} \) and \(I = [a, b] \). Take typical sequences of partitions for \(\tilde{I} = [a, b] \cap A \), and \(\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_k \) for the definition of the indicatrix functions. Refine the sequence of partitions for \(\tilde{I} = [a, b] \cap A \) to include all the partitions for \(\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_k \). Denote the new sequence of partitions for \(\tilde{I} \) by \(\{R_n\} \) and the sequences of partitions for \(\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_k \) by \(\{P_{1,n}\}, \{P_{2,n}\}, \ldots, \{P_{k,n}\} \).

Observe that the members of the collection of sequences are each collection of disjoint sets, i.e., for each integer \(n \), \(\{P_{1,n}, P_{2,n}, \ldots, P_{k,n}\} \) is a collection of disjoint sets. Hence, \(T_{I,R_n}(y) \geq \sum_{j=1}^{k} T_{I_j,P_{j,n}}(y) \). Then passing to the limit we have then

\[
T_{I,R_n}(y) \geq \sum_{j=1}^{k} T_{I_j,P_{j,n}}(y) \text{ almost everywhere on } \tilde{I}.
\]

Therefore, by Lemma 4,

\[
T_{A}(y) \geq T_{I,R_n}(y) \geq \sum_{j=1}^{k} T_{I_j,P_{j,n}}(y) \text{ almost everywhere on } A. \]

It follows that

\[
T_{A}(y) \geq \lim_{n \to \infty} \sum_{j=1}^{k} T_{I_j,P_{j,n}}(y) = \sum_{j=1}^{k} T_{I_j,P_{j,n}}(y) \text{ almost everywhere on } A.
\]

Dropping the reference to the partitions used to defined the indicatrix functions, we obtain, \(T_{A}(y) \geq \sum_{j=1}^{k} T_{I_j}(y) \) almost everywhere on \(A \).

The next result gives a bound to the image, under the total variation function, of the points of \(A \) in a closed interval, with end points in \(A \), by the integral of the indicatrix function. This is a crucial inequality used to limit the bound of the image of the total variation function.

Lemma 6. Suppose \(f : A \to \mathbb{R} \) is a function of bounded variation and \(A \) is a subset of \(\mathbb{R} \). Suppose \(a, b \in A \) and \(a < b \). Let \(\tilde{I} = [a, b] \cap A \). Then

\[
m^*(v_f(\tilde{I})) = m^*(v_f([a, b] \cap A)) \leq \int_{\tilde{I}} T_{I}(y)dy,
\]

where \(m^* \) is the Lebesgue outer measure.
Proof.

\[m^*(\nu_f(\tilde{I})) = m^*(\nu_f([a, b] \cap A)) \leq \nu_f(b) - \nu_f(a) = \int_{-\infty}^{\infty} T_j(y) dy. \]

Lemma 7. Suppose \(f : A \to \mathbb{R} \) is a function of bounded variation and \(A \) is a subset of \(\mathbb{R} \). Suppose \(\{I_j\} \) is a sequence of pairwise disjoint closed intervals with end points in \(A \). Let \(I_j = [a_j, b_j], \ a_j < b_j, \ a_j, b_j \in A \). Let \(S = \bigcup_j I_j \), \(\tilde{I}_j = [a_j, b_j] \cap A \) and \(\tilde{S} = \left(\bigcup_j I_j \right) \cap A = \bigcup_j \tilde{I}_j \). Suppose \(E \) is a measurable subset of \(\mathbb{R} \) such that \(\left[\inf \{ f(x) : x \in I_j \cap A \}, \sup \{ f(x) : x \in I_j \cap A \} \right] = \left[\inf \{ f(\tilde{I}_j) \}, \sup \{ f(\tilde{I}_j) \} \right] \subseteq E \) for each integer \(j \). Then

\[m^*(\nu_f(\tilde{S})) = m^*(\nu_f(S \cap A)) \leq \int_E \sum_j T_j(y) dy \leq \int_E T_A(y) dy. \]

Proof.

\[m^*(\nu_f(\tilde{S})) \leq \sum_j m^*(\nu_f(\tilde{I}_j)) \leq \sum_j \int_{-\infty}^{\infty} T_j(y) dy, \text{ by Lemma 6,} \]

\[\leq \sum_j \int_E T_j(y) dy, \text{ by Lemma 4,} \]

since \(\left[\inf \{ f(x) : x \in I_j \cap A \}, \sup \{ f(x) : x \in I_j \cap A \} \right] = \left[\inf \{ f(\tilde{I}_j) \}, \sup \{ f(\tilde{I}_j) \} \right] \subseteq E, \)

\[\leq \int_E T_A(y) dy, \text{ by Lemma 5.} \]

The next result is useful for the approach to using finite union of subsets before passing to infinite union of subsets.

Lemma 8. Suppose \(\{A_j\} \) is a sequence of subsets of \(\mathbb{R} \), uniformly bounded. Then there exists an integer \(k \) such that

\[m^* \left(\bigcup_{n=1}^{k} A_n \right) \geq \frac{1}{2} m^* \left(\bigcup_{n=1}^{\infty} A_n \right), \]

where \(m^* \) is the Lebesgue outer measure.
Proof. Note that $\bigcup_{n=1}^{\infty} A_n$ is bounded and so $m^*\left(\bigcup_{n=1}^{\infty} A_n\right)$ is finite.

If $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$, then we have nothing to prove since both sides of the inequality are zero.

Suppose now $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) > 0$. Then by the continuity from below property of Lebesgue outer measure,

$$\lim_{j \to \infty} m^*\left(\bigcup_{n=1}^{j} A_n\right) = m^*\left(\bigcup_{n=1}^{\infty} A_n\right).$$

Therefore, there exists an integer $k > 0$, such that for all $j \geq k$, we have that

$$m^*\left(\bigcup_{n=1}^{k} A_n\right) \leq \frac{1}{2} m^*\left(\bigcup_{n=1}^{\infty} A_n\right).$$

Hence, $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) > m^*\left(\bigcup_{n=1}^{\infty} A_n\right) - \frac{1}{2} m^*\left(\bigcup_{n=1}^{k} A_n\right) = \frac{1}{2} m^*\left(\bigcup_{n=1}^{\infty} A_n\right)$.

It is easier to prove the result we stated at the outset on set where the function is continuous. We formulate the special case in the next theorem.

Theorem 9. Suppose $f: A \to \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose E is a subset of A such that f is continuous at every point of E and that the measure of its image under f, $m(f(E))$, is zero. Then $m(\nu_f(E)) = 0$.

Proof.

We may assume that every point of E is a two-sided limit point of A because isolated points and one-sided only limit points constitute at most a denumerable set.

Since $m(f(E)) = 0$ and $f(E)$ is bounded, for any positive integer, n, there exists a bounded open set U_n such that $f(E) \subseteq U_n$ and $m(U_n) \leq \frac{1}{n}$.
Take \(e \in E \). Then \(f(e) \in U_a \) and so there exists \(\varepsilon > 0 \) such that
\[
(f(e) - \varepsilon, f(e) + \varepsilon) \subseteq U_a.
\] As \(f \) is continuous at \(e \), there exists \(\delta > 0 \) such that
\[
f((e - \delta, e - \delta) \cap A) \subseteq \left(f(e) - \frac{\varepsilon}{2}, f(e) + \frac{\varepsilon}{2} \right).
\] Since \(e \) is a two-sided limit point of \(A \), there exists \(a_e \in (e - \frac{\delta}{2}, e) \cap A \) and \(b_e \in (e, e + \frac{\delta}{2}) \cap A \). Let \(I_e = [a_e, b_e] \). Then

\[
f(I_e \cap A) \subseteq \left(f(e) - \frac{\varepsilon}{2}, f(e) + \frac{\varepsilon}{2} \right) \subseteq U_a.
\]

Therefore,

\[
\left[\inf f(I_e \cap A), \sup f(I_e \cap A) \right] \subseteq \left[f(e) - \frac{\varepsilon}{2}, f(e) + \frac{\varepsilon}{2} \right] \subseteq (f(e) - \varepsilon, f(e) + \varepsilon) \subseteq U_a.
\]

The collection \(\Gamma = \{ (a_e, b_e) : e \in E \} \) is an open cover for \(E \). Therefore, by Lindelöf Theorem, \(\Gamma \) has a countable subcover, \(\mathscr{C} = \left\{ \text{int } I_{e_i} : i = 1, 2, \ldots \right\} \).

We claim that

\[
m^* \left(v_f \left(\bigcup_{i=1}^\infty I_{e_i} \cap A \right) \right) = m^* \left(v_f \left(\bigcup_{i=1}^\infty \tilde{I}_{e_i} \right) \right) \leq 2 \int_{U_a} T_d(y) dy, \text{ where } \tilde{I}_{e_i} = I_{e_i} \cap A. \quad \text{------ (*)}
\]

By Lemma 8, \(\frac{1}{2} m^* \left(v_f \left(\bigcup_{i=1}^\infty \tilde{I}_{e_i} \right) \right) \leq m^* \left(v_f \left(\bigcup_{i=1}^k \tilde{I}_{e_i} \right) \right) \) for some positive integer \(k \).

Thus,

\[
m^* \left(v_f \left(\bigcup_{i=1}^\infty \tilde{I}_{e_i} \right) \right) \leq 2 m^* \left(v_f \left(\bigcup_{i=1}^k \tilde{I}_{e_i} \right) \right). \quad \text{---------- (1)}
\]

Note that \(\bigcup_{i=1}^k I_{e_i} \) is a finite collection of closed intervals. Hence \(\bigcup_{i=1}^k I_{e_i} \) is a finite disjoint collection of closed intervals, say, \(C_1, C_2, \ldots, C_j \). Each \(C_j \) is a union of a finite number of closed intervals in \(\{ I_{e_i} : i = 1, 2, \ldots, k \} \), say, \(I_{e_{i_1}}, I_{e_{i_2}}, \ldots, I_{e_{i_j}} \), where the union \(\bigcup \{ I_{e_{i_1}}, I_{e_{i_2}}, \ldots, I_{e_{i_j}} \} \) cannot be partitioned into two disjoint collections. It follows that the corresponding collections

\[
\left\{ \left[\inf f(I_i \cap A), \sup f(I_i \cap A) \right], i = 1, 2, \ldots, n_j \right\},
\]

also have the property that their union cannot be partitioned into two disjoint collections. We deduce this as follows. Suppose
\[
[\inf f(I_1 \cap A), \sup f(I_1 \cap A)] \cap [\inf f(I_2 \cap A), \sup f(I_2 \cap A)] = \emptyset.
\]

Then, \((I_1 \cap A) \cap (I_2 \cap A) = \emptyset\), for if \((I_1 \cap A) \cap (I_2 \cap A)\) were to be non-empty then there exists \(a \in (I_1 \cap A) \cap (I_2 \cap A)\) and
f\((a) \in [\inf f(I_1 \cap A), \sup f(I_1 \cap A)]\) and \(f(a) \in [\inf f(I_2 \cap A), \sup f(I_2 \cap A)]\),

contradicting that \([\inf f(I_1 \cap A), \sup f(I_1 \cap A)] \cap [\inf f(I_2 \cap A), \sup f(I_2 \cap A)] = \emptyset\).

Because each \([\inf f(I_j \cap A), \sup f(I_j \cap A)] \subseteq U_n\), it follows that

\[
\left[\min_{E \subseteq I_i} \{\inf f(I_i)\}, \max_{E \subseteq I_i} \{\sup f(I_i)\} \right] \subseteq [\inf f(C_j \cap A), \sup f(C_j \cap A)] \subseteq U_n.
\]

Hence, by Lemma 7,

\[
m^* \left(\bigcup_{i=1}^{k} I_i \right) = m^* \left(\bigcup_{i=1}^{j} C_i \right) \leq \int_{U_n} T_A(y)dy.
\]

Therefore, it follows from inequality (1) that

\[
m^* \left(\bigcup_{i=1}^{\infty} I_i \right) \leq 2 m^* \left(\bigcup_{i=1}^{k} I_i \right) \leq 2 \int_{U_n} T_A(y)dy.
\]

This proves the claim.

Since \(E \subseteq \bigcup_{i=1}^{\infty} I_i\), \(m^*(E) \leq m^* \left(\bigcup_{i=1}^{\infty} I_i \right) \leq 2 \int_{U_n} T_A(y)dy\).

Since \(m(U_n) \to 0\), \(\lim_{n \to \infty} \int_{U_n} T_A(y)dy = 0\). It follows that \(m^*(E) = 0\).

This completes the proof of Theorem 9.

Finally, we state our main theorem as follows.

Theorem 10. Suppose \(f : A \to \mathbb{R}\) is a function of bounded variation and \(A\) is a subset of \(\mathbb{R}\). Suppose \(E\) is a subset of \(A\) such that \(m(f(E)) = 0\). Then
\(m(v_f(E)) = 0\).

Proof. By Theorem 4 of *Functions of Bounded Variation and de La Vallée Poussin's Theorem*, the set \(D\) of discontinuities of \(f\) is at most denumerable. It
follows that \(m(f(D)) = m(\nu_f(D)) = 0 \). Since \(m(f(E)) = 0 \), \(m(f(E - D)) = 0 \). Note that \(f \) is continuous at every point of \(E - D \). Therefore, by Theorem 9, \(m(\nu_f(E - D)) = 0 \). Hence, \(m^*(\nu_f(E)) \leq m^*(\nu_f(E - D)) + m^*(\nu_f(E \cap D)) = 0 + 0 = 0 \). It follows that \(m(\nu_f(E)) = 0 \).