
Function of Bounded Variation on Arbitrary Subset and 

Johnson’s Indicatrix 

By Ng Tze Beng 

In this article, we aim to prove that if a function of bounded variation maps a 

subset to a set of measure zero, then its total variation function will map the 

same set to a set of measure zero too. We use the same technique used as before 

in my article, Functions of Bounded Variation and Johnson’s Indicatrix. 

 

We use the notation and definitions of terms given in Functions of Bounded 

Variation and de La Vallée Poussin’s Theorem and Arbitrary Function, Limit 

Superior, Dini Derivative and Lebesgue Density Theorem. 

 

Suppose :f A→  is a function of bounded variation and A is a subset of . 

We shall assume initially that A is a bounded subset and extend the definition to 

arbitrary unbounded subset A. 

Take 1 2,a a A with 1 2a a and consider the closed interval 1 2[ , ]I a a= .  Let 

1 2[ , ]I a a A=  .  Let  , :f f a A = →  be the total variation function of f on A.  

Then there exists a sequence,  nP , of partitions of the closed interval, I by 

points in A such that  1n nP P +     and 

         
, 1,lim ( ) ( )

n

j n j n
n

P

f x f x −
→

−  = total variation of f on I  = 2 1( ) ( )f fa a M − = , 

where  1 0, 1, , 2:
nn n n k nP a x x x a=    = ,  , 1, , 1,

1

( ) ( ) ( ) ( )
n

n

k

j n j n j n j n

P j

f x f x f x f x− −

=

− = −  . 

Observe that by definition of the total variation over I , given any positive 

integer, n, there exists a partition, nP  ,  such that  

                      
, 1,

1
( ) ( )

n

j n j n

P

M f x f x M
n

−−  −   

and there exists a partition, Q, such that  
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                      , 1,

1
( ) ( )

1
j n j n

Q

M f x f x M
n

−−  − 
+

 . 

We can then choose 1nP +  to be the refinement nP Q .  Starting with n =1, we can 

then construct such a sequence  nP  and plainly, 
, 1,lim ( ) ( )

n

j n j n
n

P

f x f x M−
→

− = . 

For each partition, nP  , we can define an indicatrix as follows. 

For 1 nj k  , let ,j nS  be the closed intervals with  , 1,( ) and ( )j n j nf x f x −  as end 

points, i.e., , , 1, 1, ,( ),  ( )  or ( ),  ( )j n j n j n j n j nS f x f x f x f x− −
   =     .   Let ( ),j nS be the 

characteristic function of ,j nS .  Then, plainly, ( ),j nS  is Lebesgue integrable and 

                    
, , 1,( ) ( ) ( )j n j n j nS f x f x



−
−

= −   for 1 nj k   

For the partition, nP  , let ( ),

1

nk

n j n

j

T S
=

= .  Then  nT  is a measurable function.  In 

particular, 

             , , 1, , 1,

1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

n

k k

n j n j n j n j n j n

j j P

T y dy S f x f x f x f x
 

− −
− −

= =

= = − = −    . 

Since 1nP +  refines nP ,  plainly, 1n nT T+  .   It follows that  nT  is an increasing 

sequence of non-negative measurable and integrable functions.  We now define 

for this sequence of partitions,  nP  for I  , 

                               
1 2[ , ] lima a A nI n

T T T
→

= = .  

By the Monotone Convergence Theorem, the function 
I

T  is Lebesgue integrable 

and   

 
, 1,( ) lim ( ) lim ( ) ( )

n

n j n j nI n n
P

T y dy T y dy f x f x
 

−
− −→ →

= = − =  total variation of over I , 

                 2 1( ) ( )f fa a = − .  --------------------------------(1) 

 

Definition 1.   We define the indicatrix of 
I

f  , the restriction of  f  to 

1 2[ , ]I a a A=   to be 
I

T .   Note that the function 
I

T  depends on the sequence of 
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partitions  nP  used to define it.  Nevertheless, 
I

T  is unique up to a set of 

measure zero.  That is to say, if  IT  is defined using another sequence of 

partitions,  nQ , then I
I

T T=  almost everywhere on 
1 2[ , ]I a a A=  . 

 

Lemma 2.  With notation as above, 
I

T  is unique up to a set of measure zero.   

Proof. 

Denote 
 , nI P

T  to be the indicatrix function defined by the sequence of partitions 

 nP  and 
 , nI Q

T  to  be the indicatrix function defined by the sequence of 

partitions  nQ .  Let  nR be the common refinement of     and n nP Q , with   

n n nR P Q=  .  Then 
 , ,

lim
n nI R I Rn

T T
→

= , where 
, nI R

T is the function defined using the 

partition, nR  and  

       
  , 1, 2 1, ,

( ) lim ( ) lim ( ) ( ) ( ) ( )
n n

n

j n j n f fI R I Rn n
R

T y dy T y dy f x f x a a 
 

−
− −→ →

= = − = −  . 

Since nR  is a refinement of both  and n nP Q , 
, , ,

,
n n nI R I P I Q

T T T . Passing to the limit 

we have then 
     , , ,

,
n n nI R I P I Q

T T T .   We claim that
   , ,n nI R I P

T T= almost everywhere 

on 
1 2[ , ]I a a A=  .  Suppose there exists a subset E of positive measure in 

1 2[ , ]I a a A=  such that 
   , ,n nI R I P

T T then 
   , ,

( ) ( )
n nI R I P

T y dy T y dy
 

− −
  .  But 

    2 1, ,
( ) ( ) ( ) ( )

n n
f fI R I P

T y dy T y dy a a 
 

− −
= = −   give s a contradiction.  Hence, we 

have that
   , ,n nI R I P

T T= almost everywhere on I .   Similarly, 
   , ,n nI R I Q

T T=  almost 

everywhere on I .   Therefore, 
   , ,n nI P I Q

T T=  almost everywhere on I .    

 

Johnson’s Indicatrix 

 

Definition 3. 

Suppose :f A→  is a function of bounded variation and A is a bounded subset 

of . Let infa A=  and supb A= .  Then [inf ,sup ] [ , ]A A A a b = . 
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Suppose inf A and sup A belongs to A.  Then the indicatrix function 
AT  is given 

by Definition 1. 

Suppose a A  and b A .  Take a sequence ( )na  in A such that na a .  Define 

the indicatrix function on A 

                                       
[ , ]lim

nA a b A
n

T T 
→

= . 

Note that  [ , ]na b AT  is an increasing sequence of functions, which are Lebesgue 

integrable.  Moreover,  

  
[ , ]( ) lim ( ) lim ( ) ( )

nA a b A f f n
n n

T y dy T y dy b a 
 


− −→ →

= = −   = the total variation of f on A. 

Note that ( ) ( )f f nb a −  does not depend on the anchor point used to define the 

variation function.  Note that AT does not depend on the sequence ( )na .  If ( )na  is 

another sequence in A such that na a , then we can find a subsequence ( )kna  

such that 
kn na a .  Observe that since ( )kna is a subsequence of ( )na , 

                            
[ , ] [ , ]

lim lim
n nka b A a b An k

T T
 → →

=  almost everywhere on A.  

Therefore, 
[ , ][ , ] [ , ]

lim lim lim
kn nk

a b Aa b A a b An k k
T T T  → → →

=   almost everywhere on A.  By the 

same reasoning we can show that 
[ , ] [ , ]

lim lim
n na b A a b An k

T T → →
  almost everywhere on 

A.  Hence, 
[ , ][ , ]

lim lim
nn a b Aa b An n

T T → →
=  almost everywhere on A.   Thus, 

[ , ]lim
nA a b A

n
T T 

→
=  

is defined.   

Suppose a A  and b A .  Take a sequence ( )nb  in A such that nb b .  Define 

the indicatrix function on A 

                                       
[ , ]lim

nA a b A
n

T T 
→

= . 

Note that   

[ , ]( ) lim ( ) lim ( ) ( )
nA a b A f n f

n n
T y dy T y dy b a 

 


− −→ →

= = −  = the total variation of f on A. 

Suppose a A  and b A .   Take a sequence ( )na  in A such that na a  and a 

sequence ( )nb  in A such that nb a .   Consider ( , na b A .  We have just defined 
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( , ] [ , ]lim

n k na b A a b A
k

T T 
→

=  and that 

( , ] [ , ]( ) lim ( ) lim ( ) ( )
n k na b A a b A f n f k

k k
T y dy T y dy b a 

 

 
− −→ →

= = −   = total variation of f on  

( , na b A .  Define 
( , ) ( , ]lim

na b A a b A
n

T T 
→

= . Then 

           ( )( , ) ( , ]( ) ( ) lim ( ) lim ( ) lim ( )
nA a b A a b A f n f k

n n k
T y dy T y dy T y dy b a 

  

 
− − −→ → →

= = = −    

                           = total variation of f on ( ),a b A A = .   

 

Suppose :f A→  is a function of bounded variation and A is an unbounded 

subset of .  If it is not bounded above but bounded below, then we can take a 

sequence ( )nb  in A such that nb   and define the indicatrix function 
AT as in 

the above procedure and ( )AT y dy


− = total variation of f on A.  Similarly, we can 

define 
AT  when A is not bounded below but bounded above.  Finally, we can 

define 
AT  when A is not bounded above and below in a similar fashion. 

Moreover, ( )AT y dy


− = total variation of f on A.   

 

The nest result is an immediate consequence of the definition of the indicatrix 

function. 

Lemma 4.   Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Suppose ,a b A  and a < b.  Let [ , ]I a b A=  .  Suppose  

                   inf ( ) : ,sup ( ) :y f x x I f x x I   
 

. 

Then ( ) 0
I

T y = .   

 

Lemma 5.  Suppose :f A→  is a function of bounded variation.   Suppose 

 jI  is a sequence of pairwise disjoint closed intervals with end points in A.  

Then ( ) ( )
jA I

j

T y T y  almost everywhere on A. 

Proof.   
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We prove the inequality for a finite number of the sequence  jI .  Note that 

these are pairwise disjoint subsets. Let j jI I A=  .  Take k of these sets, 

1 2, , , kI I I .   Suppose [ , ]j j jI a b= .  

 Let    1 2 1 2min , , ,  and max , , ,k ka a a a b b b b= =  and [ , ]I a b= .  Take typical 

sequences of partitions for [ , ]I a b A=  , and 1 2, , , kI I I for the definition of the 

indicatrix functions. Refine the sequence of partitions for [ , ]I a b A=  to include 

all the partitions for 1 2, , , kI I I .  Denote the new sequence of partitions for I  by 

 nR  and the sequences of partitions for 1 2, , , kI I I by      1, 2, ,, , ,n n k nP P P .  

Observe that the members of the collection of sequences are each collection of 

disjoint sets, i.e., for each integer n,  1, 2, ,, , ,n n k nP P P is a collection of disjoint 

sets.   Hence,  
,, ,

1

( ) ( )
n j j n

k

I R I P
j

T y T y
=

 .   Then passing to the limit we have then  

   ,, ,
1

( ) ( )
n j j n

k

I R I P
j

T y T y
=

  almost everywhere on I .   Therefore, by Lemma 4,

   ,, ,
1

( ) ( ) ( )
n j j n

k

A I R I P
j

T y T y T y
=

   almost everywhere on A.  It follows that  

           
   , ,, ,

1 1

( ) lim ( ) ( )
j j n j j n

k

A I P I Pk
j j

T y T y T y


→
= =

 =   almost everywhere on A. 

Dropping the reference to the partitions used to defined the indicatrix functions, 

we obtain, 
1

( ) ( )
j

A I
j

T y T y


=

  almost everywhere on A. 

 

The next result gives a bound to the image, under the total variation function, of 

the points of A in a closed interval, with end points in A, by the integral of the 

indicatrix function.  This is a crucial inequality used to limit the bound of the 

image of the total variation function.  

Lemma 6.  Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Suppose ,a b A  and a < b.  Let [ , ]I a b A=  . Then 

                    *( ( )) *( ([ , ] )) ( )f f I
m I m a b A T y dy 



−
=    , 

where m* is the Lebesgue outer measure.  
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Proof.   

         *( ( )) *( ([ , ] )) ( ) ( ) ( )f f f f I
m I m a b A b a T y dy   



−
=   − =  .  

 

Lemma 7. Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Suppose  jI  is a sequence of pairwise disjoint closed intervals 

with end points in A.  Let ,j j jI a b =   , j ja b  , ,j ja b A .  Let 
j

j

S I= , 

,j j jI a b A =    and jj

j j

S I A I
 

=  = 
 

.   Suppose E is a measurable subset of 

such that    inf ( ) : ,sup ( ) : inf ( ),sup ( )j jj jf x x I A f x x I A f I f I E       = 
  

 

for each integer j.    Then 

             ( ) ( )* ( ) * ( ) ( ) ( )
jf f AIE E

j

m S m S A T y dy T y dy =      . 

Proof. 

    ( ) ( )* ( ) * ( ) ( )
j

jf f I
j j

m S m I T y dy 


−
   , by Lemma6, 

     ( )
jIE

j

T y dy , by Lemma 4,  

            since    inf ( ) : ,sup ( ) : inf ( ),sup ( )j jj jf x x I A f x x I A f I f I E       = 
  

, 

     ( )A
E
T y dy  , by Lemma 5. 

 

The next result is useful for the approach to using finite union of subsets before 

passing to infinite union of subsets. 

Lemma 8. Suppose  jA  is a sequence of subsets of , uniformly bounded.   

Then there exists an integer k such that  

                    
1 1

1
* *

2

k

n n

n n

m A m A


= =

   
   

   
 , 

where m* is the Lebesgue outer measure. 
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Proof.  Note that 
1

n

n

A


=

 is bounded and so 
1

* n

n

m A


=

 
 
 

 is finite. 

If 
1

* 0n

n

m A


=

 
= 

 
, then we have nothing to prove since both sides of the 

inequality are zero.    

 

Suppose now 
1

* 0n

n

m A


=

 
 

 
.  Then by the continuity from below property of 

Lebesgue outer measure,  

              

                        
1 1

lim * *
j

n n
j

n n

m A m A


→
= =

   
=   

  
. 

Therefore, there exists an integer k > 0, such that for all j k , we have that  

                     
1 1 1

1
* * *

2

j

n n n

n n n

m A m A m A
 

= = =

     
−      

    
. 

Hence, 
1 1 1 1

1 1
* * * *

2 2

k

n n n n

n n n n

m A m A m A m A
  

= = = =

       
 − =       

       
. 

 

 

It is easier to prove the result we stated at the outset on set where the function is 

continuous.  We formulate the special case in the next theorem. 

Theorem 9.  Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Suppose E is a subset of A such that f is continuous at every point 

of E and that the measure of its image under f, ( ( ))m f E , is zero. Then 

( ( )) 0fm E = .             

Proof.  

We may assume that every point of E is a two-sided limit point of A because 

isolated points and one-sided only limit points constitute at most a denumerable 

set. 

Since ( ( )) 0m f E =  and f (E) is bounded, for any positive integer, n, there exists a 

bounded open set nU  such that ( ) nf E U  and ( )
1

nm U
n

  . 
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Take e E .  Then ( ) nf e U  and so there exists 0e   such that  

( )( ) , ( )e e nf e f e U − +  .   As f is continuous at e, there exists 0e   such that 

( )( , ) ( ) , ( )
2 2

e e
e ef e e A f e f e

 
 

 
− −   − + 

 
.  Since e is a two-sided limit point of 

A, there exists ( , )
2

e
ea e e A


 −   and ( , )

2

e
eb e e A


 +  .  Let [ , ]e e eI a b= .  Then 

 ( ) ( ) , ( )
2 2

e e
e nf I A f e f e U

  
  − +  

 
.  Therefore,  

( ) ( ) ( )inf ,sup ( ) , ( ) ( ) , ( )
2 2

e e
e e e e nf I A f I A f e f e f e f e U

 
 

 
   − +  − +     

 
. 

The collection  ( , ) :e ea b e E =   is an open cover for E.  Therefore, by Lindelöf 

Theorem,  has a countable subcover, C   =  int ; 1,2,
ieI i = .   

We claim that 

     
1 1

* * 2 ( )
i

i
n

ef e f A
U

i i

m I A m I T y dy 
 

= =

      
 =       

      
 , where 

i
i

e eI I A=  . ------ (*) 

By Lemma 8, 
1 1

1
* *

2
i i

k

e ef f

i i

m I m I 


= =

      
      

      
 for some positive integer k.  

Thus,   

                           
1 1

* 2 *
i i

k

e ef f

i i

m I m I 


= =

      
      

      
.   ---------------- (1) 

Note that 
1

i

k

e

i

I
=

 is a finite collection of closed intervals.  Hence 
1

i

k

e

i

I
=

is a finite 

disjoint collection of closed intervals, say, 1 2, , , JC C C .  Each jC  is a union of a 

finite number of closed intervals in : 1,2, ,
ieI i k= , say , 

1 2, , ,
jnI I I ,  where the 

union  1 2, , ,
jnI I I cannot be partitioned into two disjoint collections.  It 

follows that the corresponding collections 

              inf ( ),sup ( ) , 1,2, ,i i jf I A f I A i n  = , 

also have the property that their union cannot be partitioned into two disjoint 

collections.  We deduce this as follows. Suppose   
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              1 1 2 2inf ( ),sup ( ) inf ( ),sup ( )f I A f I A f I A f I A     = . 

Then, ( ) ( )1 2I A I A   = , for if ( ) ( )1 2I A I A   were to be non- empty then 

there exists ( ) ( )1 2a I A I A    and   

   1 1 2 2( ) inf ( ),sup ( )  and ( ) inf ( ),sup ( )f a f I A f I A f a f I A f I A      , 

contradicting that    1 1 2 2inf ( ),sup ( ) inf ( ),sup ( )f I A f I A f I A f I A     = . 

Because each inf ( ),sup ( )j j nf I A f I A U     , it follows that 

          
1 1
min inf ( ) ,max sup ( ) inf ( ),sup ( )

j j

i i j j n
i n i n

f I f I f C A f C A U
   

         
. 

Hence, by Lemma 7, 

             
1 1

* * ( )
i

n

k J

ef f i A
U

i i

m I m C T y dy 
= =

      
=       

      
 . 

Therefore, it follows from inequality (1) that 

                 
1 1

* 2 * 2 ( )
i i

n

k

e ef f A
U

i i

m I m I T y dy 


= =

      
       

      
 . 

This proves the claim. 

Since 
1

ie

i

E I


=

 
  
 

, ( )
1

* ( ) * 2 ( )
i

n

ef f A
U

i

m E m I T y dy 


=

  
   

  
 .    

Since ( ) 0nm U → ,  lim ( ) 0
n

A
Un

T y dy
→

= . It follows that ( )* ( ) 0fm E = . 

This completes the proof of Theorem 9. 

 

Finally, we state our main theorem as follows. 

Theorem 10.  Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Suppose E is a subset of A such that ( ( ))m f E  is zero. Then 

( ( )) 0fm E = .             

Proof.  By Theorem 4 of Functions of Bounded Variation and de La Vallée 

Poussin's Theorem, the set D of discontinuities of f is at most denumerable. It 
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follows that ( ) ( )( ) ( ) 0fm f D m D= = .  Since ( ( )) 0m f E = , ( ( )) 0m f E D− = .  Note 

that f is continuous at every point of E D− . Therefore, by Theorem 9, 

( ( )) 0fm E D − = .  Hence, ( )*( ( )) *( ( )) * ( ) 0 0 0f f fm E m E D m E D   − +  = + = . It 

follows that ( ( )) 0fm E = . 

Corollary 11.  Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Suppose E is a subset of A.  Then ( ( )) 0m f E =  if, and only if,  

( ( )) 0fm E = . 

Proof.  If ( ( )) 0m f E = , then by Theorem 11 ( ( )) 0fm E = .  If ( ( )) 0fm E = , then by 

Theorem 16 of Functions of Bounded Variation and Johnson's Indicatrix, 

( ( )) 0m f E = . Note that this theorem applies to arbitrary function of bounded 

variation as the same proof is valid for the general function of bounded 

variation. 

Theorem 12.  Suppose :f A→  is a function of bounded variation and A is a 

subset of .  Then f is a Lusin function if, and only if, its total variation 

function, f , is a Lusin function. 

Proof.  Suppose E is a subset of A of zero measure.  Then by Corollary 11, 

( ( )) 0m f E =  if, and only if, ( ( )) 0fm E = .  Thus, f maps a null set to a null set if, 

and only if, f  does the same.  Hence, Theorem 12 follows. 

Theorem 13.  Suppose A is a measurable closed and bounded subset of  or an 

interval and :f A→  is a finite valued function of bounded variation on A.  

Then f is absolutely continuous, if and only if, :f A → is absolutely 

continuous on A. 

Proof.  By Theorem 13 of Functions of Bounded Variation and de La 

Vallée Poussin's Theorem, f is continuous if, and only if, f  is continuous. 

So, we assume that f is a continuous function of bounded variation. 

Since ( ) ( ) ( ) ( )f ff y f x y x −  −  for any ,x y A , it follows that if f is 

absolutely continuous, then f is absolutely continuous. 

 

Note that the total variation function, f ,  of f is a bounded increasing 

function and so is of bounded variation. 
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Suppose now f is absolutely continuous.  By Lemma 3 of Absolutely 

Continuous Functions on Arbitrary Domain and Function of Bounded 

variation, f is a Lusin function.  By Theorem 10, since f is of bounded 

variation, f is also a Lusin Function.   

If A is closed and bounded, by Theorem 4 of Absolutely Continuous 

Functions on Arbitrary Domain and Function of Bounded variation, is 

absolutely continuous 

Suppose A is an interval.  Since the total variation function, f , is of 

bounded variation, continuous and a Lusin function, by Theorem 15 of 

Absolutely Continuous Functions on Arbitrary Domain and Function of 

Bounded variation, is absolutely continuous.  
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