Function of Bounded Variation on Arbitrary Subset and Johnson's Indicatrix

By Ng Tze Beng

In this article, we aim to prove that if a function of bounded variation maps a subset to a set of measure zero, then its total variation function will map the same set to a set of measure zero too. We use the same technique used as before in my article, Functions of Bounded Variation and Johnson's Indicatrix.

We use the notation and definitions of terms given in Functions of Bounded Variation and de La Vallée Poussin's Theorem and Arbitrary Function, Limit Superior, Dini Derivative and Lebesgue Density Theorem.

Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}.
We shall assume initially that A is a bounded subset and extend the definition to arbitrary unbounded subset A.

Take $a_{1}, a_{2} \in A$ with $a_{1}<a_{2}$ and consider the closed interval $I=\left[a_{1}, a_{2}\right]$. Let $\tilde{I}=\left[a_{1}, a_{2}\right] \cap A$. Let $v_{f}=v_{f, a}: A \rightarrow \mathbb{R}$ be the total variation function of f on A. Then there exists a sequence, $\left\{P_{n}\right\}$, of partitions of the closed interval, I by points in A such that $P_{n} \subseteq P_{n+1} \subseteq \cdots$ and

$$
\lim _{n \rightarrow \infty} \sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=\text { total variation of } f \text { on } \tilde{I}=v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right)=M \text {, }
$$

where $P_{n}: a_{1}=x_{0, n}<x_{1, n}<\cdots<x_{k_{n, n}}=a_{2}, \sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=\sum_{j=1}^{k_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|$.
Observe that by definition of the total variation over \tilde{I}, given any positive integer, n, there exists a partition, P_{n}, such that

$$
M-\frac{1}{n}<\sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| \leq M
$$

and there exists a partition, Q, such that

$$
M-\frac{1}{n+1}<\sum_{Q}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| \leq M .
$$

We can then choose P_{n+1} to be the refinement $P_{n} \cup Q$. Starting with $n=1$, we can then construct such a sequence $\left\{P_{n}\right\}$ and plainly, $\lim _{n \rightarrow \infty} \sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=M$.

For each partition, P_{n}, we can define an indicatrix as follows.
For $1 \leq j \leq k_{n}$, let $S_{j, n}$ be the closed intervals with $f\left(x_{j, n}\right)$ and $f\left(x_{j-1, n}\right)$ as end points, i.e., $S_{j, n}=\left[f\left(x_{j, n}\right), f\left(x_{j-1, n}\right)\right]$ or $\left[f\left(x_{j-1, n}\right), f\left(x_{j, n}\right)\right]$. Let $\chi\left(S_{j, n}\right)$ be the characteristic function of $S_{j, n}$. Then, plainly, $\chi\left(S_{j, n}\right)$ is Lebesgue integrable and

$$
\int_{-\infty}^{\infty} \chi\left(S_{j, n}\right)=\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| \text { for } 1 \leq j \leq k_{n}
$$

For the partition, P_{n}, let $T_{n}=\sum_{j=1}^{k_{n}} \chi\left(S_{j, n}\right)$. Then T_{n} is a measurable function. In particular,

$$
\int_{-\infty}^{\infty} T_{n}(y) d y=\sum_{j=1}^{k_{n}} \int_{-\infty}^{\infty} \chi\left(S_{j, n}\right)=\sum_{j=1}^{k_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=\sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right| .
$$

Since P_{n+1} refines P_{n}, plainly, $T_{n+1} \geq T_{n}$. It follows that $\left\{T_{n}\right\}$ is an increasing sequence of non-negative measurable and integrable functions. We now define for this sequence of partitions, $\left\{P_{n}\right\}$ for \tilde{I},

$$
T_{\bar{I}}=T_{\left[a_{1}, a_{2} \mid \backslash A\right.}=\lim _{n \rightarrow \infty} T_{n} .
$$

By the Monotone Convergence Theorem, the function $T_{\bar{I}}$ is Lebesgue integrable and

$$
\begin{align*}
\int_{-\infty}^{\infty} T_{\tilde{I}}(y) d y & =\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} T_{n}(y) d y=\lim _{n \rightarrow \infty} \sum_{P_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=\text { total variation of over } \tilde{I}, \\
& =v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right) . \tag{1}
\end{align*}
$$

Definition 1. We define the indicatrix of $f_{\bar{I}}$, the restriction of f to $\tilde{I}=\left[a_{1}, a_{2}\right] \cap A$ to be $T_{\bar{I}}$. Note that the function $T_{\bar{I}}$ depends on the sequence of
partitions $\left\{P_{n}\right\}$ used to define it. Nevertheless, $T_{\tilde{I}}$ is unique up to a set of measure zero. That is to say, if $T_{\tilde{I}}$ is defined using another sequence of partitions, $\left\{Q_{n}\right\}$, then $T_{\tilde{I}}=T_{\tilde{I}}$ almost everywhere on $\tilde{I}=\left[a_{1}, a_{2}\right] \cap A$.

Lemma 2. With notation as above, $T_{\tilde{I}}$ is unique up to a set of measure zero.

Proof.

Denote $T_{\tilde{I},\left\{P_{n}\right\}}$ to be the indicatrix function defined by the sequence of partitions $\left\{P_{n}\right\}$ and $T_{\bar{I},\left\{Q_{n}\right\}}$ to be the indicatrix function defined by the sequence of partitions $\left\{Q_{n}\right\}$. Let $\left\{R_{n}\right\}$ be the common refinement of $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$, with $R_{n}=P_{n} \cup Q_{n}$. Then $T_{\tilde{I},\left\{R_{n}\right\}}=\lim _{n \rightarrow \infty} T_{\tilde{I}, R_{n}}$, where $T_{\tilde{I}, R_{n}}$ is the function defined using the partition, R_{n} and

$$
\int_{-\infty}^{\infty} T_{\tilde{I},\left\{R_{n}\right\}}(y) d y=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} T_{\tilde{I}, R_{n}}(y) d y=\lim _{n \rightarrow \infty} \sum_{R_{n}}\left|f\left(x_{j, n}\right)-f\left(x_{j-1, n}\right)\right|=v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right) .
$$

Since R_{n} is a refinement of both P_{n} and $Q_{n}, T_{\tilde{I}, R_{n}} \geq T_{\tilde{I}, P_{n}}, T_{\tilde{I}, Q_{n}}$. Passing to the limit we have then $T_{\tilde{I},\left\{R_{n}\right\}} \geq T_{\tilde{I},\left\{P_{n}\right\}}, T_{\tilde{I},\left\{Q_{n}\right\}}$. We claim that $T_{\bar{I},\left\{\left\{_{n}\right\}\right.}=T_{\tilde{I},\left\{P_{n}\right\}}$ almost everywhere on $\tilde{I}=\left[a_{1}, a_{2}\right] \cap A$. Suppose there exists a subset E of positive measure in $\tilde{I}=\left[a_{1}, a_{2}\right] \cap A$ such that $T_{\tilde{I},\left\{R_{n}\right\}}>T_{\tilde{I},\left\{P_{n}\right\}}$ then $\int_{-\infty}^{\infty} T_{\tilde{I},\left\{R_{n}\right\}}(y) d y>\int_{-\infty}^{\infty} T_{\tilde{I},\left\{P_{n}\right\}}(y) d y$. But $\int_{-\infty}^{\infty} T_{\tilde{I},\left\{\left\{_{n}\right\}\right.}(y) d y=\int_{-\infty}^{\infty} T_{\tilde{I},\left\{P_{n}\right\}}(y) d y=v_{f}\left(a_{2}\right)-v_{f}\left(a_{1}\right)$ give s a contradiction. Hence, we have that $T_{\tilde{I},\left\{R_{n}\right\}}=T_{\tilde{I},\left\{P_{n}\right\}}$ almost everywhere on \tilde{I}. Similarly, $T_{\tilde{I},\left\{R_{n}\right\}}=T_{\tilde{I},\left\{Q_{n}\right\}}$ almost everywhere on \tilde{I}. Therefore, $T_{\tilde{I},\left\{P_{n}\right\}}=T_{\tilde{I},\left\{\varrho_{n}\right\}}$ almost everywhere on \tilde{I}.

Johnson's Indicatrix

Definition 3.

Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a bounded subset of \mathbb{R}. Let $a=\inf A$ and $b=\sup A$. Then $A \subseteq[\inf A, \sup A]=[a, b]$.

Suppose $\inf A$ and $\sup A$ belongs to A. Then the indicatrix function T_{A} is given by Definition 1.

Suppose $a \notin A$ and $b \in A$. Take a sequence $\left(a_{n}\right)$ in A such that $a_{n} \searrow a$. Define the indicatrix function on A

$$
T_{A}=\lim _{n \rightarrow \infty} T_{\left[a_{n}, b\right] \backslash A} .
$$

Note that $\left\{T_{\left[a_{n}, b\right] \cap A}\right\}$ is an increasing sequence of functions, which are Lebesgue integrable. Moreover,

$$
\int_{-\infty}^{\infty} T_{A}(y) d y=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} T_{\left[a_{n}, b\right] \cap A}(y) d y=\lim _{n \rightarrow \infty} v_{f}(b)-v_{f}\left(a_{n}\right)=\text { the total variation of } f \text { on } A .
$$

Note that $v_{f}(b)-v_{f}\left(a_{n}\right)$ does not depend on the anchor point used to define the variation function. Note that T_{A} does not depend on the sequence $\left(a_{n}\right)$. If $\left(a_{n}\right)$ is another sequence in A such that $a_{n} \searrow a$, then we can find a subsequence $\left(a_{n_{k}}\right)$ such that $a_{n_{k}}<a_{n}$. Observe that since $\left(a_{n_{k}}\right)$ is a subsequence of $\left(a_{n}\right)$,

$$
\lim _{n \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A}=\lim _{k \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A} \text { almost everywhere on } A \text {. }
$$

Therefore, $\lim _{n \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A}=\lim _{k \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A} \geq \lim _{k \rightarrow \infty} T_{\left[a_{k}, b\right] \cap A}$ almost everywhere on A. By the same reasoning we can show that $\lim _{n \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A} \geq \lim _{k \rightarrow \infty} T_{[a n, b] \cap A}$ almost everywhere on A. Hence, $\lim _{n \rightarrow \infty} T_{[a n, b] \cap A}=\lim _{n \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A}$ almost everywhere on A. Thus, $T_{A}=\lim _{n \rightarrow \infty} T_{\left[a_{n}, b\right] \cap A}$ is defined.

Suppose $a \in A$ and $b \notin A$. Take a sequence $\left(b_{n}\right)$ in A such that $b_{n} \nearrow b$. Define the indicatrix function on A

$$
T_{A}=\lim _{n \rightarrow \infty} T_{\left[a, b_{n}\right] \cap A} .
$$

Note that
$\int_{-\infty}^{\infty} T_{A}(y) d y=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} T_{\left[a, b_{n}\right] \perp A}(y) d y=\lim _{n \rightarrow \infty} v_{f}\left(b_{n}\right)-v_{f}(a)=$ the total variation of f on A.
Suppose $a \notin A$ and $b \notin A$. Take a sequence $\left(a_{n}\right)$ in A such that $a_{n} \searrow a$ and a sequence $\left(b_{n}\right)$ in A such that $b_{n} \nearrow a$. Consider $\left(a, b_{n}\right] \cap A$. We have just defined

$$
T_{\left(a, b_{n}\right] \cap A}=\lim _{k \rightarrow \infty} T_{\left[a_{k}, b_{n}\right] \cap A} \text { and that }
$$

$\int_{-\infty}^{\infty} T_{\left(a, b_{n}\right] \cap A}(y) d y=\lim _{k \rightarrow \infty} \int_{-\infty}^{\infty} T_{\left[a_{k}, b_{n}\right] \cap A}(y) d y=\lim _{k \rightarrow \infty} v_{f}\left(b_{n}\right)-v_{f}\left(a_{k}\right)=$ total variation of f on $\left(a, b_{n}\right] \cap A$. Define $T_{(a, b) \cap A}=\lim _{n \rightarrow \infty} T_{\left(a, b_{n} \cap A\right.}$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} T_{A}(y) d y & =\int_{-\infty}^{\infty} T_{(a, b) \cap A}(y) d y=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} T_{\left(a, b_{n} \cap A\right.}(y) d y=\lim _{n \rightarrow \infty}\left(v_{f}\left(b_{n}\right)-\lim _{k \rightarrow \infty} v_{f}\left(a_{k}\right)\right) \\
& =\text { total variation of } f \text { on }(a, b) \cap A=A .
\end{aligned}
$$

Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is an unbounded subset of \mathbb{R}. If it is not bounded above but bounded below, then we can take a sequence $\left(b_{n}\right)$ in A such that $b_{n} \nearrow \infty$ and define the indicatrix function T_{A} as in the above procedure and $\int_{-\infty}^{\infty} T_{A}(y) d y=$ total variation of f on A. Similarly, we can define T_{A} when A is not bounded below but bounded above. Finally, we can define T_{A} when A is not bounded above and below in a similar fashion.

Moreover, $\int_{-\infty}^{\infty} T_{A}(y) d y=$ total variation of f on A.

The nest result is an immediate consequence of the definition of the indicatrix function.

Lemma 4. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose $a, b \in A$ and $a<b$. Let $\tilde{I}=[a, b] \cap A$. Suppose

$$
y \notin[\inf \{f(x): x \in \tilde{I}\}, \sup \{f(x): x \in \tilde{I}\}] .
$$

Then $T_{\tilde{I}}(y)=0$.

Lemma 5. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation. Suppose $\left\{I_{j}\right\}$ is a sequence of pairwise disjoint closed intervals with end points in A. Then $T_{A}(y) \geq \sum_{j} T_{\tilde{I}_{j}}(y)$ almost everywhere on A.

Proof.

We prove the inequality for a finite number of the sequence $\left\{I_{i}\right\}$. Note that these are pairwise disjoint subsets. Let $\tilde{I}_{j}=I_{j} \cap A$. Take k of these sets, $\tilde{I}_{1}, \tilde{I}_{2}, \cdots, \tilde{I}_{k}$. Suppose $I_{j}=\left[a_{j}, b_{j}\right]$.

Let $a=\min \left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ and $b=\max \left\{b_{1}, b_{2}, \cdots, b_{k}\right\}$ and $I=[a, b]$. Take typical sequences of partitions for $\tilde{I}=[a, b] \cap A$, and $\tilde{I}_{1}, \tilde{I}_{2}, \cdots, \tilde{I}_{k}$ for the definition of the indicatrix functions. Refine the sequence of partitions for $\tilde{I}=[a, b] \cap A$ to include all the partitions for $\tilde{I}_{1}, \tilde{I}_{2}, \cdots, \tilde{I}_{k}$. Denote the new sequence of partitions for \tilde{I} by $\left\{R_{n}\right\}$ and the sequences of partitions for $\tilde{I}_{1}, \tilde{I}_{2}, \cdots, \tilde{I}_{k}$ by $\left\{P_{1, n}\right\},\left\{P_{2, n}\right\}, \cdots,\left\{P_{k, n}\right\}$.
Observe that the members of the collection of sequences are each collection of disjoint sets, i.e., for each integer $n,\left\{P_{1, n}, P_{2, n}, \cdots, P_{k, n}\right\}$ is a collection of disjoint sets. Hence, $T_{i, R_{n}}(y) \geq \sum_{j=1}^{k} T_{I_{I, P, j, j}}(y)$. Then passing to the limit we have then $T_{T_{\left\{,\left\{R_{n}\right\}\right.}}(y) \geq \sum_{j=1}^{k} T_{L_{S},\left\{P_{j, y\}}\right\}}(y)$ almost everywhere on \tilde{I}. Therefore, by Lemma 4, $T_{A}(y) \geq T_{i,\left\{R_{n}\right\}}(y) \geq \sum_{j=1}^{k} T_{I_{j},\left\{P_{j, j}\right\}}(y)$ almost everywhere on A. It follows that

Dropping the reference to the partitions used to defined the indicatrix functions, we obtain, $T_{A}(y) \geq \sum_{j=1}^{\infty} T_{L_{j}}(y)$ almost everywhere on A.

The next result gives a bound to the image, under the total variation function, of the points of A in a closed interval, with end points in A, by the integral of the indicatrix function. This is a crucial inequality used to limit the bound of the image of the total variation function.

Lemma 6. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose $a, b \in A$ and $a<b$. Let $\tilde{I}=[a, b] \cap A$. Then

$$
m^{*}\left(v_{f}(\tilde{I})\right)=m^{*}\left(v_{f}([a, b] \cap A)\right) \leq \int_{-\infty}^{\infty} T_{\tilde{I}}(y) d y,
$$

where m * is the Lebesgue outer measure.

Proof.

$$
m^{*}\left(v_{f}(\tilde{I})\right)=m^{*}\left(v_{f}([a, b] \cap A)\right) \leq v_{f}(b)-v_{f}(a)=\int_{-\infty}^{\infty} T_{\bar{I}}(y) d y .
$$

Lemma 7. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose $\left\{I_{j}\right\}$ is a sequence of pairwise disjoint closed intervals with end points in A. Let $I_{j}=\left[a_{j}, b_{j}\right], a_{j}<b_{j}, a_{j}, b_{j} \in A$. Let $S=\bigcup_{j} I_{j}$, $\tilde{I}_{j}=\left[a_{j}, b_{j}\right] \cap A$ and $S=\left(\bigcup_{j} I_{j}\right) \cap A=\bigcup_{j} \tilde{I}_{j}$. Suppose E is a measurable subset of \mathbb{R} such that $\left[\inf \left\{f(x): x \in I_{j} \cap A\right\}, \sup \left\{f(x): x \in I_{j} \cap A\right\}\right]=\left[\inf f\left(\tilde{I}_{j}\right), \sup f\left(\tilde{I}_{j}\right)\right] \subseteq E$ for each integer j. Then

$$
m^{*}\left(v_{f}(S)\right)=m^{*}\left(v_{f}(S \cap A)\right) \leq \int_{E} \sum_{j} T_{i_{j}}(y) d y \leq \int_{E} T_{A}(y) d y .
$$

Proof.

$$
\begin{aligned}
& m^{*}\left(V_{f}(S)\right) \leq \sum_{j} m^{*}\left(v_{f}\left(\tilde{I}_{j}\right)\right) \leq \sum_{j} \int_{-\infty}^{\infty} T_{I_{j}}(y) d y, \text { by Lemma6, } \\
& \leq \sum_{j} \int_{E} T_{I_{j}}(y) d y, \text { by Lemma 4, } \\
& \quad \text { since }\left[\inf \left\{f(x): x \in I_{j} \cap A\right\}, \sup \left\{f(x): x \in I_{j} \cap A\right\}\right]=\left[\inf f\left(\tilde{I}_{j}\right), \sup f\left(\tilde{I}_{j}\right)\right] \subseteq E, \\
& \leq \int_{E} T_{A}(y) d y, \text { by Lemma } 5 .
\end{aligned}
$$

The next result is useful for the approach to using finite union of subsets before passing to infinite union of subsets.

Lemma 8. Suppose $\left\{A_{j}\right\}$ is a sequence of subsets of \mathbb{R}, uniformly bounded. Then there exists an integer k such that

$$
m *\left(\bigcup_{n=1}^{k} A_{n}\right) \geq \frac{1}{2} m *\left(\bigcup_{n=1}^{\infty} A_{n}\right),
$$

where m^{*} is the Lebesgue outer measure.

Proof. Note that $\bigcup_{n=1}^{\infty} A_{n}$ is bounded and so $m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)$ is finite. If $m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=0$, then we have nothing to prove since both sides of the inequality are zero.

Suppose now $m *\left(\bigcup_{n=1}^{\infty} A_{n}\right)>0$. Then by the continuity from below property of Lebesgue outer measure,

$$
\lim _{j \rightarrow \infty} m^{*}\left(\bigcup_{n=1}^{j} A_{n}\right)=m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)
$$

Therefore, there exists an integer $k>0$, such that for all $j \geq k$, we have that

$$
\left|m *\left(\bigcup_{n=1}^{j} A_{n}\right)-m *\left(\bigcup_{n=1}^{\infty} A_{n}\right)\right|<\frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)
$$

Hence, $m^{*}\left(\bigcup_{n=1}^{k} A_{n}\right)>m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)-\frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\frac{1}{2} m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right)$.

It is easier to prove the result we stated at the outset on set where the function is continuous. We formulate the special case in the next theorem.

Theorem 9. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose E is a subset of A such that f is continuous at every point of E and that the measure of its image under $f, m(f(E))$, is zero. Then $m\left(v_{f}(E)\right)=0$.

Proof.

We may assume that every point of E is a two-sided limit point of A because isolated points and one-sided only limit points constitute at most a denumerable set.

Since $m(f(E))=0$ and $f(E)$ is bounded, for any positive integer, n, there exists a bounded open set U_{n} such that $f(E) \subseteq U_{n}$ and $m\left(U_{n}\right) \leq \frac{1}{n}$.

Take $e \in E$. Then $f(e) \in U_{n}$ and so there exists $\varepsilon_{e}>0$ such that $\left(f(e)-\varepsilon_{e}, f(e)+\varepsilon_{e}\right) \subseteq U_{n}$. As f is continuous at e, there exists $\delta_{e}>0$ such that $f\left(\left(e-\delta_{e}, e-\delta_{e}\right) \cap A\right) \subseteq\left(f(e)-\frac{\varepsilon_{e}}{2}, f(e)+\frac{\varepsilon_{e}}{2}\right)$. Since e is a two-sided limit point of A, there exists $a_{e} \in\left(e-\frac{\delta_{e}}{2}, e\right) \cap A$ and $b_{e} \in\left(e, e+\frac{\delta_{e}}{2}\right) \cap A$. Let $I_{e}=\left[a_{e}, b_{e}\right]$. Then

$$
\begin{aligned}
& f\left(I_{e} \cap A\right) \subseteq\left(f(e)-\frac{\varepsilon_{e}}{2}, f(e)+\frac{\varepsilon_{e}}{2}\right) \subseteq U_{n} . \text { Therefore, } \\
& {\left[\inf f\left(I_{e} \cap A\right), \sup f\left(I_{e} \cap A\right)\right] \subseteq\left[f(e)-\frac{\varepsilon_{e}}{2}, f(e)+\frac{\varepsilon_{e}}{2}\right] \subseteq\left(f(e)-\varepsilon_{e}, f(e)+\varepsilon_{e}\right) \subseteq U_{n} .}
\end{aligned}
$$

The collection $\Gamma=\left\{\left(a_{e}, b_{e}\right): e \in E\right\}$ is an open cover for E. Therefore, by Lindelöf Theorem, Γ has a countable subcover, $\mathscr{C}=\left\{\operatorname{int} I_{e_{i}} ; i=1,2, \cdots\right\}$.

We claim that

$$
\begin{equation*}
m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} I_{e_{i}} \cap A\right)\right)=m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_{i}}\right)\right) \leq 2 \int_{U_{n}} T_{A}(y) d y, \text { where } \tilde{I}_{e_{i}}=I_{e_{i}} \cap A . \tag{*}
\end{equation*}
$$

By Lemma $8, \frac{1}{2} m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_{i}}\right)\right) \leq m^{*}\left(v_{f}\left(\bigcup_{i=1}^{k} \tilde{I}_{e_{i}}\right)\right)$ for some positive integer k. Thus,

$$
\begin{equation*}
m^{*}\left(v_{f}\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_{i}}\right)\right) \leq 2 m^{*}\left(v_{f}\left(\bigcup_{i=1}^{k} \mid \tilde{I}_{e_{i}}\right)\right) \tag{1}
\end{equation*}
$$

Note that $\bigcup_{i=1}^{k} I_{e_{i}}$ is a finite collection of closed intervals. Hence $\bigcup_{i=1}^{k} I_{e_{i}}$ is a finite disjoint collection of closed intervals, say, $C_{1}, C_{2}, \cdots, C_{J}$. Each C_{j} is a union of a finite number of closed intervals in $\left\{I_{e_{i}}: i=1,2, \cdots, k\right\}$, say, $I_{1}, I_{2}, \cdots, I_{n_{j}}$, where the union $\bigcup\left\{I_{1}, I_{2}, \cdots, I_{n_{j}}\right\}$ cannot be partitioned into two disjoint collections. It follows that the corresponding collections

$$
\left\{\left[\inf f\left(I_{i} \cap A\right), \sup f\left(I_{i} \cap A\right)\right], i=1,2, \cdots, n_{j}\right\},
$$

also have the property that their union cannot be partitioned into two disjoint collections. We deduce this as follows. Suppose

$$
\left[\inf f\left(I_{1} \cap A\right), \sup f\left(I_{1} \cap A\right)\right] \cap\left[\inf f\left(I_{2} \cap A\right), \sup f\left(I_{2} \cap A\right)\right]=\varnothing .
$$

Then, $\left(I_{1} \cap A\right) \cap\left(I_{2} \cap A\right)=\varnothing$, for if $\left(I_{1} \cap A\right) \cap\left(I_{2} \cap A\right)$ were to be non- empty then there exists $a \in\left(I_{1} \cap A\right) \cap\left(I_{2} \cap A\right)$ and $f(a) \in\left[\inf f\left(I_{1} \cap A\right), \sup f\left(I_{1} \cap A\right)\right]$ and $f(a) \in\left[\inf f\left(I_{2} \cap A\right), \sup f\left(I_{2} \cap A\right)\right]$, contradicting that $\left[\inf f\left(I_{1} \cap A\right), \sup f\left(I_{1} \cap A\right)\right] \cap\left[\inf f\left(I_{2} \cap A\right), \sup f\left(I_{2} \cap A\right)\right]=\varnothing$. Because each $\left[\inf f\left(I_{j} \cap A\right), \sup f\left(I_{j} \cap A\right)\right] \subseteq U_{n}$, it follows that

$$
\left[\min _{1 \leq i \leq n_{j}}\left\{\inf f\left(\tilde{I}_{i}\right)\right\}, \max _{1 \leq i \leq n_{j}}\left\{\sup f\left(\tilde{I}_{i}\right)\right\}\right] \subseteq\left[\inf f\left(C_{j} \cap A\right), \sup f\left(C_{j} \cap A\right)\right] \subseteq U_{n} .
$$

Hence, by Lemma 7,

$$
m *\left(v_{f}\left(\bigcup_{i=1}^{k} \tilde{I}_{e_{i}}\right)\right)=m *\left(v_{f}\left(\bigcup_{i=1}^{J} C_{i}\right)\right) \leq \int_{U_{n}} T_{A}(y) d y .
$$

Therefore, it follows from inequality (1) that

$$
m *\left(v_{f}\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_{i}}\right)\right) \leq 2 m *\left(v_{f}\left(\bigcup_{i=1}^{k} \tilde{I}_{e_{i}}\right)\right) \leq 2 \int_{U_{n}} T_{A}(y) d y .
$$

This proves the claim.
Since $E \subseteq\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_{i}}\right), m *\left(v_{f}(E)\right) \leq m *\left(v_{f}\left(\bigcup_{i=1}^{\infty} \tilde{I}_{e_{i}}\right)\right) \leq 2 \int_{U_{n}} T_{A}(y) d y$.
Since $m\left(U_{n}\right) \rightarrow 0, \lim _{n \rightarrow \infty} \int_{U_{n}} T_{A}(y) d y=0$. It follows that $m^{*}\left(v_{f}(E)\right)=0$.
This completes the proof of Theorem 9.

Finally, we state our main theorem as follows.
Theorem 10. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose E is a subset of A such that $m(f(E))$ is zero. Then $m\left(v_{f}(E)\right)=0$.

Proof. By Theorem 4 of Functions of Bounded Variation and de La Vallée Poussin's Theorem, the set D of discontinuities of f is at most denumerable. It
follows that $m(f(D))=m\left(v_{f}(D)\right)=0$. Since $m(f(E))=0, m(f(E-D))=0$. Note that f is continuous at every point of $E-D$. Therefore, by Theorem 9 , $m\left(v_{f}(E-D)\right)=0$. Hence, $m^{*}\left(v_{f}(E)\right) \leq m^{*}\left(v_{f}(E-D)\right)+m^{*}\left(v_{f}(E \cap D)\right)=0+0=0$. It follows that $m\left(v_{f}(E)\right)=0$.

Corollary 11. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Suppose E is a subset of A. Then $m(f(E))=0$ if, and only if, $m\left(v_{f}(E)\right)=0$.

Proof. If $m(f(E))=0$, then by Theorem $11 m\left(v_{f}(E)\right)=0$. If $m\left(v_{f}(E)\right)=0$, then by Theorem 16 of Functions of Bounded Variation and Johnson's Indicatrix, $m(f(E))=0$. Note that this theorem applies to arbitrary function of bounded variation as the same proof is valid for the general function of bounded variation.

Theorem 12. Suppose $f: A \rightarrow \mathbb{R}$ is a function of bounded variation and A is a subset of \mathbb{R}. Then f is a Lusin function if, and only if, its total variation function, v_{f}, is a Lusin function.

Proof. Suppose E is a subset of A of zero measure. Then by Corollary 11, $m(f(E))=0$ if, and only if, $m\left(v_{f}(E)\right)=0$. Thus, f maps a null set to a null set if, and only if, v_{f} does the same. Hence, Theorem 12 follows.

Theorem 13. Suppose A is a measurable closed and bounded subset of \mathbb{R} or an interval and $f: A \rightarrow \mathbb{R}$ is a finite valued function of bounded variation on A. Then f is absolutely continuous, if and only if, $v_{f}: A \rightarrow \mathbb{R}$ is absolutely continuous on A.

Proof. By Theorem 13 of Functions of Bounded Variation and de La Vallée Poussin's Theorem, f is continuous if, and only if, v_{f} is continuous. So, we assume that f is a continuous function of bounded variation. Since $|f(y)-f(x)| \leq\left|v_{f}(y)-v_{f}(x)\right|$ for any $x, y \in A$, it follows that if v_{f} is absolutely continuous, then f is absolutely continuous.

Note that the total variation function, v_{f}, of f is a bounded increasing function and so is of bounded variation.

Suppose now f is absolutely continuous. By Lemma 3 of Absolutely Continuous Functions on Arbitrary Domain and Function of Bounded variation, f is a Lusin function. By Theorem 10, since f is of bounded variation, v_{f} is also a Lusin Function.
If A is closed and bounded, by Theorem 4 of Absolutely Continuous Functions on Arbitrary Domain and Function of Bounded variation, v_{f} is absolutely continuous
Suppose A is an interval. Since the total variation function, v_{f}, is of bounded variation, continuous and a Lusin function, by Theorem 15 of Absolutely Continuous Functions on Arbitrary Domain and Function of Bounded variation, v_{f} is absolutely continuous.

