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Kestelman gave the most general form of the change of variable theorem for Riemann 

integral.  Note that in Kestelman’s theorem, the change of variable function is an indefinite 

integral of a Riemann integrable function.  It is, of course, an absolutely continuous function. 

We present here a slightly general change of variable theorem (Theorem 1 part (1) below) not 

requiring the derivative of the change of variable function to be Riemann integrable.  This 

makes the application of this version readily available.  

Theorem 1.   Let [a, b] be a non-trivial interval. Suppose :[ , ] [ , ]a b c d →  is a continuous 

onto function and :[ , ]f c d →  is a bounded function.  Suppose  maps its set of non-

differentiability into a set of measure zero.  That is, if 
{ [ , ] :  is not differentiable or has infinite derivative at }P x a b x=  , then the Lebesgue 

measure ( ( )) 0m P = .   Define *:[ , ]a b →  by

( ),   if  is differentiable finitely at ,
*( )

0,  if  is not differentiable finitely or is infinite at  

x x
x

x

 





= 


 . 

(1) Suppose f is Riemann integrable on [c, d].   If ( ( )) *( )f x x   is Riemann integrable 

on [a, b], then 

                                      
( )

( )
( ( )) *( ) ( )

b b

a a
f x x dx f x dx




  =  . 

(2) Suppose *  is Riemann integrable on [a, b].  Then ( ( )) *( )f x x   is Riemann 

integrable on [a, b] if, and only if, f is Riemann integrable on [c, d].    

                          

 

Remark. 

1.  If   is continuous and differentiable on (a, b), then it satisfies the hypothesis of Theorem 

1.   The function  satisfying the condition of Theorem 1 need not be of bounded variation 

but it is a Lusin function.  If  is absolutely continuous, then it satisfies the condition of 

Theorem 1. 

2.  Kestelman change of variable theorem follows from Theorem 1 part (2). 

 

To prove Theorem 1, we shall need the following result. 

 

 

Theorem 2.   Let [a, b] be a non-trivial interval. Suppose :[ , ] [ , ]a b c d →  is a continuous 

onto function and :[ , ]f c d →  is a bounded function.  Suppose  maps its set of non-

differentiability into a set of measure zero.  That is, if 
{ [ , ] :  is not differentiable or has infinite derivative at }P x a b x=  , then the Lebesgue 

measure ( ( )) 0m P = .   Define *:[ , ]a b →  by

( ),   if  is differentiable finitely at ,
*( )

0,  if  is not differentiable finitely at  or ( ) is infinite 

x x
x

x x

 


 


= 


 . 

Suppose *  is Riemann integrable on [a, b]. 
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Suppose A is a subset of [a, b] of measure zero such that *  is continuous on [a, b] − A.   

Then for x in [a, b] − A, ( ( )) *( )f t t   is continuous at x, if, and only if, *( ) 0x =  or f is 

continuous at (x). 

 

Proof.   

Take x [a, b] − A.  Then *  is continuous at x.  If additionally, * 0 = , then ( ( )) *( )f t t   

is continuous at x since f is bounded on ([a, b]).   If f is continuous at (x), then ( ( ))f t  is 

continuous at x since  is continuous at x and it follows that ( ( )) *( )f t t   is continuous at x.  

 

Suppose now ( ( )) *( )f t t  is continuous at [ , ]x a b A − .  *( )x  is either equal to zero or 

is non zero.  Suppose *( ) 0x  .  Since ( ( )) *( )f t t  is continuous at x, ( ( ))f t  is 

continuous at x.  Since *( ) 0x  ,   is differentiable at x ( ) *( ) 0x x  =  .  Without loss 

of generality, we may assume that x is in the interior of [a, b].  Suppose *( ) 0x  .   Then by 

continuity of *  at x, there exists 0   such that ( , ) ( , )x x a b − +   and ( , )t x x  − +  

implies that 
1

*( ) *( ) *( )
2

t x x  −   so that 
1

*( ) *( ) 0
2

t x   .  Hence, for 

( , )t x x  − + , 
1

*( ) ( ) *( ) 0
2

t t x  =   .  Therefore,  is differentiable on 

( , )x x − +  and ( ) 0t  .  Hence,   is a strictly increasing continuous function on 

( , )x x − + .  Therefore, the restriction of  to ( , )x x − +  has a strictly continuous 

inverse g.  Moreover, 
( )

lim ( ) ( ( )) .
y x

g y g x x



→

= =  Therefore,

( ) ( )
( ) ( )

lim ( ) lim ( ) ( ) ( ( ))
y x y x

f y f g y f x f x
 

  
→ →

= = =  .  Therefore, f is continuous at ( ).x   

We can show similarly that if *( ) 0x  , then f is continuous at ( ).x    

 

Proof of Theorem 1 part (1). 

Suppose f is Riemann integrable on [c, d].   Let :[ , ]F c d →  be defined by 

( ) ( )
x

c
F x f t dt=   for [ , ]x c d  .  Then F is absolutely continuous and is differentiable almost 

everywhere on [c, d].  Thus, there exists a subset [ , ]E c d  such that ( ) 0m E =   and 

( ) ( )F x f x =  for [ , ]x c d E − .  Note that and ( ( )) 0m P = . 

Let  
1( )B P E−=  .  Then ( ( )) 0m B = .  Since the Lebesgue measure is regular, we can 

take a measurable subset [ , ]C c d  such that B C  and ( ) 0.m C B− =   For [ , ]x c d C − , 

  is differentiable at x and F is differentiable at ( )x and ( ( )) ( ( ))F x f x  = .  Thus, F   is 

differentiable on  [ , ]c d C−  and ( ) ( ) ( ( )) ( ) ( ( )) *( )F x f x x f x x     = =  for 

[ , ]x c d C − .   As ( ) ( )B E P    and ( ( )) ( ) 0m P m E = = , ( ( )) 0m B = .  As   is a 

Lusin function, ( ( )) 0m C = .  As F is also a Lusin function ( ( )) 0m F C = .   Therefore, as

( ) ( ) ( ( )) *( )F x f x x     for  x C  and ( ( )) *( )f x x   is Riemann integrable, by 

Theorem 1 of my article, “When is a continuous function on a closed and bounded interval be 

of bounded variation, absolutely continuous? The answer and application to generalized 

change of variable for Lebesgue integral”, F   is absolutely continuous and so is of 

bounded variation and differentiable almost everywhere on [a, b].   By Theorem 2 of 
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"Change of Variables Theorem", ( ) ( ) 0F x  =  almost everywhere on 
1( )B P E−=  .  

Note that ( ( )) *( ) 0f x x  = for x in P. It follows that ( ) ( ) ( ( )) *( )F x f x x   =  almost 

everywhere for x in P.   Observe that  is differentiable on 
1( )E P− −  and since 

1( ( ( ) )) 0m E P − − = .  By Theorem 2 of "Change of Variables Theorem", 0 =  almost 

everywhere on 
1( )E P− − and we have ( ) ( ) ( ( )) *( )F x f x x   =  almost everywhere for x 

in 
1( )E P− − .  Hence, ( ) ( ) ( ( )) *( )F x f x x   =  almost everywhere on C.  Thus,  

( ) ( ) ( ( )) *( )F x f x x   =  almost everywhere on [c, d].   Since F is absolutely continuous, 

( )

( )
( ) ( ( )) ( ( ))

b

a
f t dt F b F a




 = − .  As  F   is absolutely continuous,  

      ( ( )) ( ( )) ( ) ( ) ( ) ( ) ( )) *( )
b b

a a
F b F a F b F a F t dt f t t dt      − = − = =  . 

 

Proof of Theorem 1 part (2). 

Suppose *  is Riemann integrable on [a, b].  Then there exists a subset A of measure    

zero such that *  is continuous on [a, b] − A. 

Suppose ( ( )) *( )f x x   is Riemann integrable on [a, b].  Then ( ( )) *( )f x x  is continuous 

almost everywhere on [a, b] − A.  For [ , ]x a b A − , by Theorem 2, ( ( )) *( )f x x   is not 

continuous at x if, and only if, *( ) 0x   and f is not continuous at ( )x .  Let 

{ [ , ] :   is not continuous at ( )}C t a b A f t=  −  and   

                         { [ , ] : *( ) 0}D t a b A t=  −    

                             { [ , ] :  is differentiable at  and ( ) 0}t a b A t t =  −  . 

Thus, for [ , ]x a b A − , ( ( )) *( )f x x   is not continuous at x if, and only if, x C D  .  

Since ( ( )) *( )f x x  is continuous almost everywhere on [a, b] − A, ( ) 0m C D = .  As  is 

a Lusin function, ( )( ) 0m C D  = .   Let * { [ , ] : *( ) 0}D t a b A t=  − = .  Then [ , ]a b A−  is 

a disjoint union *D D .   Note that ( ) ( *)C C D C D=    .  Observe that  *D  is a union 

of{ [ , } :  is differentiable at  and ( ) 0}t a b A t t  − =  and 

{ [ , } :  is not differentiable at  or ( ) }t a b A t t  − =  . 

By hypothesis, ( )( ){ [ , } :  is not differentiable at  or ( ) } 0m t a b A t t   − =  = .  By 

Theorem 3 of my article “Functions Having Finite Derivatives, Bounded Variation, Absolute 

Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem”, 

( )( ){ [ , ] :  is differentiable at  and ( ) 0} 0m t a b A t t   − = = .  Therefore, ( ( *)) 0m D = .  It 

follows that ( )( ) 0m C = .   Since A is of measure zero, ( )( ) 0m A = .  Suppose 

[ , ] ( )y c d A −  and f is not continuous at y.  Then there exists [ , ]t a b A −  such that 

( )y t=  and so t C  and ( )y C  which is a set of measure zero.  Hence,  

              { [ , ] :  is not continuous at } ( ) ( )E y c d f y A C =    . 

Therefore, ( ) 0m E =  and so f is continuous almost everywhere and bounded and so is 

Riemann integrable. 

 

Suppose f : [c, d] → R is Riemann integrable.  Then f is continuous almost everywhere on [c, 

d].  Hence, there exists a subset E in [c, d] of measure zero such that f is continuous on [c, d]− 
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E.  Note that f is bounded on [c, d] and * is bounded on [a, b]. It follows that ( ( )) *( )f t t 

is bounded on [a, b]. 

Suppose [ , ]x a b A −  and *( ) 0.x =   Since the function *  is continuous at x and f is 

bounded so that f  is also bounded, lim ( ( )) *( ) lim *( ) *( ) 0
y x y x

f y y y x   
→ →

= = = .  Hence 

( ( )) *( )f t t   is continuous at x for  [ , ] : *( ) 0x t a b A t  − = .    

Let    [ , ] : *( ) 0 [ , ] : ( ) 0L t a b A t t a b A t =  −  =  −  .  It remains to show that 

( ( )) *( )f t t  is continuous almost everywhere in L.  Let 
1( )B E−= .   For x L B − , 

( )x E   x so that f is continuous at (x) and since  is continuous at x, it follows that 

( ( ))f t is continuous at x.  Therefore, ( ( )) *( )f t t  is continuous on L− B.   

By Theorem 2 of Change of Variables Theorems, since ( )( ) 0m B L  =  because    

( )( ) 0m B = , ( ) 0t =  almost everywhere on B L .  This means *( ) 0t =  almost 

everywhere on B L .  It follows that ( ( )) *( )f t t  is continuous almost everywhere on 

B L .  Hence, ( ( )) *( )f t t   is continuous almost everywhere on L and so on [ , ]a b A−  and 

as m(A) =0, it is continuous almost everywhere on [a, b].  This means that ( ( )) *( )f t t   is 

Riemann integrable on [a, b].  

 

 

 

Corollary 3.    Let [a, b] be a non-trivial interval. Suppose :[ , ] [ , ]a b c d →  is a continuous 

onto function and :[ , ]f c d →  is a bounded function.  Suppose  is differentiable finitely 

except for a denumerable subset in [a, b]. Define *:[ , ]a b →  by

( ),   if  is differentiable finitely at ,
*( )

0,  if  is not differentiable finitely or is infinite at  

x x
x

x

 





= 


 . 

(1)  Suppose f is Riemann integrable on [c, d].   If ( ( )) *( )f x x   is Riemann integrable on 

[a, b], then  
( )

( )
( ( )) *( ) ( )

b b

a a
f x x dx f x dx




  =  . 

(2)  Suppose *  is Riemann integrable on [a, b].  Then ( ( )) *( )f x x   is Riemann 

integrable on [a, b] if, and only if, f is Riemann integrable on [c, d].   

 

Proof.   If  is differentiable finitely except for a denumerable subset in [a, b], then it 

satisfies the condition in Theorem 1 and the Corollary follows from Theorem 1. 

                          

 

    

Corollary 3 applies to common situation when :[ , ] [ , ]a b c d →  is continuous and 

differentiable or continuous and piecewise differentiable on (a, b).   

 

Example 4. 

(1)  Here is an example of seemingly difficult improper Riemann integral. 
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Let g:[0, 1] → R be defined by 

2 2sin ,  0
( ) 2

0,       0

x x
g x x

x

  
  

=  
 =

   and let   f :[0, 1] → R be 

defined by

1
,  0

( ) 2

0,    0

x
f x x

x




= 
 =

 .  Then f is not bounded on [0, 1].    The function f is 

Lebesgue integrable and the integral is given by the improper Riemann integral 
1 1

0 0 0
( ) lim ( ) lim ( )

tt t
f x dt f x dt F t

+ +→ →
= =  , where F : (0, 1] → R defined by 

1

( ) ( ) 1
t

F t f x dx t= = − .   Observe that  

                      

                     
( )2

1 1
,   0 and  , integer 1

22 sin
( ( ))

1
0,     0 or  , integer 1

2

x

x x k
kx

f g x

x x k
k




  


= 


= = 



 

Note that f g  is not bounded on [0, 1], hence it is not Riemann integrable on [0, 1].  

 

The function g is differentiable on [0, 1] and  

               

22 sin sin cos ,   0
( ) 2 2 2

0,     0 

x x
g x x x x

x

  


      
−        =      

 =

. 

Note that g   is bounded and continuous almost everywhere on [0, 1]. Hence, it is Riemann 

integrable on [0, 1].  However, 

               

( )

( )

( )2 2

2

sin cos 1
sin , 0 and  , integer 1

2 2 2sin
( ( )) ( )

1
0, 0  or  , integer 1  

2

x x

x

x x k
x x k

f g x g x

x x k
k

 



   
−       

  
 = 


= = 

 

and is not Lebesgue integrable on [0, 1].    Moreover, ( ( )) ( )f g x g x  is unbounded on [0, 1] 

and so it is not Riemann integrable on [0, 1].  However, ( ( )) ( )f g x g x  is Riemann integrable 

on the interval, [t, 1], for 0 1t  .    

We can apply Theorem 1 in this case to the integrals on [t, 1] for 0 1t  , giving 

                     
1 (1) 1

( ) ( )
( ( )) ( ) ( ) ( ) 1 ( )

g

t g t g t
f g x g x dx f x dx f x dx g t = = = −   . 

Therefore, the improper Riemann integral, 

                       ( )
1 1

0 0 0
( ( )) ( ) lim ( ( )) ( ) lim 1 ( ) 1

tt t
f g x g x dx f g x g x dx g t

+ +→ →

  =  = − =  . 

This shows that ( ( )) ( )f g x g x  is improperly Riemann integrable on [0, 1] and the integral is 

equal to 1. 

Note that one can deduce by applying an alternating series test for improper integrals, that 
( ( )) ( )f g x g x  is improperly Riemann integrable on [0, 1]. 
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(2)  Let g:[0, 1] → R be defined by 
sin ,  0

( ) 2

0,       0

x x
g x x

x

  
  

=  
 =

  .  The function g is 

continuous on [0, 1] and differentiable on (0,1] with ( ) sin cos
2 2 2

g x
x x x

     
 = −   

   
 for x > 

0.  Note that g   is not Lebesgue integrable on [0, 1] and so is not Riemann integrable on [0, 

1].   Let 
( ),   if 0,

*( )
0,  if 0

g x x
g x

x

 
= 

=
.    Let ( ) sin

2 2
f x x

  
=  

 
 , Then f is Riemann integrable 

on [0, 1] and   

                 
sin sin sin cos , 0 

( ( )) *( ) 2 2 2 2 2 2

0, 0 

x x
f g x g x x x x x

x

             
−         

=         
 =

. 

Note that ( ( )) *( )f g x g x  is bounded on [0, 1] and is continuous on (0, 1].   Therefore, 

( ( )) *( )f g x g x  is Riemann integrable on [0, 1].  By Theorem 1, part (1),                

                       
1 (1) 1

0 (0) 0
( ( )) *( ) ( ) sin 1

2 2

g

g
f g x g x dx f x dx x dx

  
= = = 

 
   . 


