
Integration Using Differentiation Under The Integral Sign 

By Ng Tze Beng 

We give examples of how differentiation under the integral sign can be used to evaluate 

improper integrals. 

We are going to use two versions of the differentiation under the integral sign, a proper 

Riemann integral version and an improper Riemann integral version, which are Theorem 59 

and Theorem 60 of [1] Chapter 14, Mathematical Analysis, An Introduction in My Calculus 

Web. 

Theorem 1.  Suppose one of the following two conditions (i) and (ii) is satisfied. 

(i)  :[ , ] [ , ]f c d a b → is a continuous function such the partial derivative ( , )
f

x t
t




 exists 

for all (x, t) in [c, d]  [a, b] and is continuous on [c, d]  [a, b]. 

(ii) : ( , ) [ , ]f c d a b → is a continuous function such that the partial derivative ( , )
f

x t
t




 

exists for all (x, t) in (c, d)  [a, b] and is continuous on (c, d )  [a, b] and that for each t in 

[a, b], the function ( ) ( , )tf x f x t= is Lebesgue integrable on (c, d).  Suppose there exists a 

Lebesgue integrable function g on (c, d) such that ( , ) ( )
f

x t g x
t





 for all (x, t) in 

( , ) [ , ]c d a b . 

Let :[ , ]F a b → be defined by ( ) ( , )
d

c
F t f x t dx=  . 

Then, F is differentiable and ( ) ( , )
d

c

f
F t x t dx

t


 =


 for each t in [a, b]. 

 

Theorem 2.  Suppose :[ , ) [ , ]f c a b  → is a continuous function such that the partial 

derivative ( , )
f

x t
t




 exists for all (x, t) in [c, )  [a, b] and is continuous on [c, )  [a, b].  

Suppose that the improper Cauchy Riemann integral ( , )
c

f x t dx


 converges absolutely for 

each t in [a, b].  Suppose that the Cauchy Riemann integral ( , )
c

f
x t dx

t

 

 converges absolutely 

for each t in [a, b].  Suppose furthermore the improper integral ( , )
c

f
x t dx

t

 

  converges 

uniformly for t in [a, b]. 

 

Let :[ , ]F a b → be defined by ( ) ( , )
c

F t f x t dx


=  .  Then F is differentiable and 

( ) ( , )
c

f
F t x t dx

t

 
 =

 .  

 

Example 1. 

For t  0, 
1

0

sin( )
tan ( )

2

tx x
e dx t

x


− −= − .   

0

sin( )

2

x
dx

x



= . 



We shall first consider the case t > 0.   

For x ≥ 0, t ≥ 0, let  

sin( )
 , 0,

( , )

1 ,  0

tx x
e x

f x t x

x

−


= 
 =

 .  Then f is a continuous function on 

[0, ) [0, )   .  

Case t > 0. 

For x ≥ 0, t > 0,  ( , ) txf x t e− .   Fix a real number a > 0. 

Let ( ) ( , )tf x f x t=  . 

Then for t > 0, since 
0

0

1 1 1 1 1
lim lim 0

x s

tx tx ts

s s
x

e dx e e
t t t t t

=


− − −

→ →
=

 
= − = − = − =  

 ,  the improper 

Riemann integral 
0 0

( ) ( , )tf x dx f x t dx
 

=  is absolutely convergent for t in (0, a] 

For t = 0, 0
0 0

sin( )
( )

2

x
f x dx dx

x

 

= =  .   Since  
0

sin( )x
dx

x



  is conditionally convergent, it 

is not a Lebesgue integral.   

Define 
0 0 0

sin( )
( ) ( ) ( , ) tx

t

x
F t f x dx f x t dx e dx

x

  
−= = =   . 

Since 
0 0

1
( , ) txf x t dx e dx

t

 
− =   for t > 0 and 

1
lim 0
t t→

= , lim ( ) 0
t

F t
→

= .  

It is easily seen that for x > 0, the partial derivative,  ( , ) sin( )xtf
x t e x

t

−
= −


.  We also have, 

(0, ) 0
f

t
t


=


, (0,0) 0

f

t


=


, ( ,0) sin( )

f
x x

t


= −


. 

Hence, we can write for x ≥ 0, t ≥ 0, ( , ) sin( )xtf
x t e x

t

−
= −


.  For x ≥ 0, t > 0, ( , ) xtf

x t e
t

−



 

and since 
xte−

 is Lebesgue integrable for t > 0 on [0, ∞), ( , )
f

x t
t




 is Lebesgue integrable for 

each t > 0 on [0, ∞).   Therefore, 
0

( , )
f

x t dx
t

 

 is absolutely convergent for t in [k, K], for any 

k > 0 and any K > k. 

Note that, for t > 0, 

 
0 0

( , ) sin( )
s s

xtf
x t dx e x dx

t

−
= −

  0 0
cos( ) cos( )

sx s
xt xt

x
x e t e x dx

=
− −

=
 = − −    

                        0 0
1 cos( ) sin( ) sin( )

sx s
st xt xt

x
s e t x e x te dx

=
− − −

=
 = − − +        

                       2

0
1 cos( ) sin( ) sin( )

s
st st xts e t s e t x e dx− − −= − − −  . 



Therefore,  ( )20

1
sin( ) 1 cos( ) sin( )

1

s
xt st ste x dx s e t s e

t

− − −= − −
+ .  Hence, 

( )20 0 0

1
( , ) sin( ) lim sin( ) lim 1 cos( ) sin( )

1

s
xt xt st st

s s

f
x t dx e x dx e x dx s e t s e

t t

 
− − − −

→ →


= = = − −

 +    

                         
2

1

1 t
=

+
. 

For t = 0, 
0 0

( ,0) sin( )
f

x dx x dx
t

 
=

  and is not convergent. 

Note that ( , ) sin( )xt xt xkf
x t e x e e

t

− − −
= −  


 for t k  and since 

0

xke dx


−

  is convergent 

and independent of t, we can conclude that the improper Riemann integrals, 
0

( , )
f

x t dx
t

 

  

converges absolutely and uniformly with respect to t in [k, ∞) and hence in [ , ]k K . 

By Theorem 2, by considering f (x, t) with domain [0, ) [ , ]k K  , F is differentiable at t in 

[ , ]k K and  

                0 20 0

1
( ) ( , ) sin( )

1

xtf
F t x t dx e x dx

t t

 
−

 = = − = −
 +   for all [ , ]t k K . 

By taking arbitrary k > 0 and any K > k, we conclude that F is differentiable for all t > 0 and

2

1
( )

1
F t

t
 = −

+
 for all t > 0.  Hence, for any c > t, 

              
1 1 1

2

1
( ) ( ) tan ( ) tan ( ) tan ( )

1

t t

cc
F t F c du u c t

u

− − − − = − = − = − + . 

This means 1 1( ) tan ( ) tan ( ) ( )F t c t F c− −= − +  for all 0 < t < c. But lim ( ) 0
c

F c
→

=  and so 

                   
1 1 1( ) lim tan ( ) tan ( ) lim ( ) tan ( )

2c c
F t c t F c t

− − −

→ →
= − + = − . 

Hence,  
1

0

sin( )
tan ( )

2

tx x
e dx t

x


− −= − . 

Case t = 0. 

Firstly, we check that 
0

sin( )x
dx

x



  is convergent. 

For t > s > 0, 

    
2 2

sin( ) cos( ) cos( ) cos( ) cos( ) cos( )
t

t t t

s s s
s

x x x s t x
dx dx dx

x x x s t x

 
= − − = − −  

   .         

Therefore,      

                  
2

sin( ) 1 1 1 2t t

s s

x
dx dx

x s t x s
 + + =   .  -------------------------- (1) 



Note that  
0

sin( )
lim 1
x

x

x+→
=  and if we let 

sin( )
 ,  0,

( )

1 ,  0

x
x

g x x

x




= 
 =

 then  

0 0

sin( )
( )

x
dx g x dx

x

 

=  . 

Given  > 0, let N be an integer so that 
1

2N


 .  Therefore, for any t > s ≥ N,  by (1), 

                           
sin( ) 2 2t

s

x
dx

x s N
   . 

It follows by Theorem 2 Chapter 14 that 
0

( )g x dx


  exists and so 
0

sin( )x
dx

x



  is convergent. 

We also have that 

                                        
1 sin( )

lim
n

nn

x
dx

x

+

→  = 0.    -------------------------------------- (2) 

Now we define for n > 0, 

            
0 0 0

sin( )
( ) ( ) ( , )

n n n
tx

n t

x
H t f x dx f x t dx e dx

x

−= = =   . 

Plainly, 

               ( )
2

0
0

1 1 1
( ) 1

n
n

nx nx n

nH n e dx e e
n n n

− − − 
 = − = −   
 . 

Since 
1

0
n
→  , it follows by the Comparison Test that, 

                              lim ( ) 0n
n

H n
→

=  .   ---------------------------------------------------  (3) 

By Theorem 1 part(i), taking the domain of ( , )f x t  as [0, ] [0, ]n K   for any K > t ≥ 0,  

                       
0 0

( ) ( , ) sin( )
n n

tx

n

f
H t x t dx e x dx

t

− = = −
  . 

Now,           

       
00 0

sin( ) cos( ) cos( )
n nx n

tx tx tx

x
e x dx x e t e x dx

=
− − −

=
 = − −    

                               0 0
1 cos( ) sin( ) sin( )

nn
tn tx txn e t x e t e x dx− − − = − − +    

                              2

0
1 cos( ) sin( ) sin( )

n
tn tn txn e t n e t e x dx− − −= − − −  . 

Hence, for t ≥ 0,  ( )2

0
1 sin( ) 1 cos( ) sin( )

n
tx tn tnt e x dx n e t n e− − −+ = − − so that 

                     
( )

( )20

1 cos( ) sin( )
sin( )

1

tn
n

tx e n t n
e x dx

t

−

− − +
=

+
 . 



Thus, for t ≥ 0, 
( )

( )2

cos( ) sin( ) 1
( )

1

tn

n

e n t n
H t

t

− + −
 =

+
. 

Taking limit as n tends to infinity, for all t > 0, 

                                  
( )2

1
lim ( )

1
n

n
H t

t→

 = −
+

. ------------------------------------------- (4) 

Observe that for all t ≥ 0, 

                   
( )

( )
( )

( ) ( )2 2 2

1 1 1 1 2
( )

1 1 1

tn t

n

e t e t
H t

t t t

− −+ + + +
   

+ + +
. 

Therefore, ( )nH t  is dominated by 
( )2

2

1 t+
 on [0, ∞) which is Lebesgue integrable on [0, ∞). 

Now we are going to employ Lebesgue Dominated Convergence Theorem. 

For each integer n ≥ 1, let 

                                                      
[0, ]n n ng H =  , 

where 
[0, ]n is the characteristic function on the interval [0, n].   

Then plainly, for t > 0, 

                             
2

1
lim ( ) lim ( )

1
n n

n n
g t H t

t→ →

= = −
+

. 

Each gn is a Lebesgue integrable function and gn converges pointwise to  
2

1

1 t
−

+
  for all t > 

0. 

Moreover, 
( )2

2
( ) ( )

1
n ng t H t

t
 

+
.  Note that 

( )20

2

1
dt

t



+
  is absolutely convergent. 

Hence, by the Lebesgue Dominated Convergence Theorem,              

            
20 0 0

1
lim ( ) lim ( )

1 2

n

n n
n n

g t dt H t dt dt
t

 

→ →

= = − = −
+   . 

But 
0

( ) ( ) (0)
n

n n nH t dt H n H = − . So, taking limit we have, by (3), 

    
0

lim ( ) lim ( ) lim (0) 0 lim (0) lim (0)
2

n

n n n n n
n n n n n

H t dt H n H H H


→ → → → →

− = = − = − = − . 

This means lim (0)
2

n
n

H


→
= .   That is to say, 

0

sin( )
lim

2

n

n

x
dx

x



→
= . Hence,

0

sin( )

2

x
dx

x



= . 

Thus, for all t ≥ 0,
1

0

sin( )
tan ( )

2

tx x
e dx t

x


− −= −  

 



Example 2.  For any t in , 
2 2

0
cos(2 )

2

x te tx dx e


− −=  . 

Let  
2

( , ) cos(2 )xf x t e xt−= .  Then f is a continuous function on [0, ) ( , )  − + . Moreover,  
2

( , ) xf x t e−  for all x ≥ 0 and all t in . 

The partial derivative 
2

( , ) 2 sin(2 )xf
x t xe xt

t

−
= −


exists for all x ≥ 0 and all t in . 

Since 
2

0

xe dx


−

  is convergent, the improper Riemann integral 

2

0 0
( , ) cos(2 )xf x t dx e xt dx

 
−=   is absolutely convergent and ( ) ( , )tf x f x t=  is Lebesgue 

integrable on [0, ∞). 

Also, we have that  
2

( , ) 2 xf
x t xe

t

−



 for all x in [0, ∞) and all t in  and 

2

( ) 2 xg x xe−=  is a 

Lebesgue integrable function on [0, ∞).  It follows that the improper Riemann integral 

0
( , )

f
x t dx

t

 

 converges absolutely and uniformly for t in ( , )−  .  In particular, it converges 

uniformly for t in [ , ]a a− for any a > 0.  Therefore, by Theorem 2, 

2

0 0
( ) ( , ) cos(2 )xF t f x t dx e xt dx

 
−= =  ,  

2

0 0
( ) ( , ) 2 sin(2 )xf

F t f x t dx xe xt dx
t

 
−

 = = −
   for 

any t in [ , ]a a− .  Since a is arbitrary, for all t , 

                                       
2

0
( ) 2 sin(2 )xF t xe xt dx


− = − . 

Now, for any t > 0, 

               
2 2 2

0 00
2 sin(2 ) sin(2 ) 2 cos(2 )

ss s
x x xxe xt dx e xt te xt dx− − − − = −

    

                                                
2 2

0
sin(2 ) 2 cos(2 )

s
s xe st t e xt dx− −= −  . 

Hence,   
2 2 2 2

0 0 0
2 sin(2 ) lim 2 sin(2 ) lim sin(2 ) 2 lim cos(2 )

s s
x x s x

s s s
xe xt dx xe xt dx e st t e xt dx


− − − −

→ → →
− = − = −        

2 2

0 0
0 2 cos(2 ) 2 cos(2 )x xt e xt dx t e xt dx

 
− −= − = −  . 

That is, 

                                       ( ) 2 ( )F t tF t = −  . 

Hence, F(t) is a solution of the differential equation 

                                    2
dy

ty
dt

= −  . 

Solving this equation by the method of variable separable gives 

                                  
2ty e K−=   for some constant K 

and K= y(0). 



Thus, we have  
2

( ) (0) tF t F e−=  . 

Now 
2

0 0
(0) ( ,0)

2

xF f x dx e dx
 

−= = =  .   Therefore, 

                              
2 2

0
( ) cos(2 )

2

x tF t e xt dx e


− −= = . 

 

Example 3. 

For t > 0, 
2

1 2

20

sin ( ) ln( )
tan ln(4 )

2 2 4 2

tx x t t t t
e dx t

x


− −  

= − − + + 
 

 .   In particular, 

2
1

20

sin ( ) 1 ln(5)
tan

2 2 4

x x
e dx

x


− −  

= − − 
 

 . 

For x ≥ 0, t ≥ 0, let  

2

2

sin ( )
 , 0,

( , )

1 ,  0

tx x
e x

f x t x

x

−


= 
 =

 .  Then f is a continuous function on 

[0, ) [0, )   .  

For x ≥ 0, t > 0,  ( , ) txf x t e− .   Let ( ) ( , )tf x f x t=  . 

Then for t > 0, since 
0

0

1 1 1 1 1
lim lim 0

x s

tx tx ts

s s
x

e dx e e
t t t t t

=


− − −

→ →
=

 
= − = − = − =  

 ,  the improper 

Riemann integral 
0 0

( ) ( , )tf x dx f x t dx
 

=  is absolutely convergent for t > 0. 

For t = 0, 

2

0 20 0

sin ( )
( )

2

x
f x dx dx

x

 

= =  .   Since 
( )

2

2

sin( )x

x
 is Lebesgue integrable on [0, ∞). 

this means 
0

( )tf x dx


  is improperly Riemann integrable and Lebesgue integrable for all t ≥ 

0. 

Define 
2

20 0 0

sin ( )
( ) ( ) ( , ) tx

t

x
F t f x dx f x t dx e dx

x

  
−= = =   . 

Since 
0 0

1
( , ) txf x t dx e dx

t

 
− =   for t > 0 and 

1
lim 0
t t→

= , lim ( ) 0
t

F t
→

= . 

It is easily seen that for x > 0, the partial derivative,  
2sin ( )

( , ) xtf x
x t e

t x

−
= −


.  We also have, 

(0, ) 0
f

t
t


=


, (0,0) 0

f

t


=


,

2sin ( )
( ,0)

f x
x

t x


= −


. 

Hence, we can write for x > 0, t > 0, 
2sin ( )

( , ) xt xtf x
x t e e

t x

− −
= − 


.   Take any k > 0. 



Then for any t k  and x > 0, tx kx and so ( , ) xkf
x t e

t

−



 and since (0, ) 0

f
t

t


=


,

( , ) xkf
x t e

t

−



for any t k and 0x  . Since 

0

xke dx


−

 is convergent, 
0

( , )
f

x t dx
t

 



converges absolutely and uniformly in t in [ , )k  . Therefore, by Theorem 2, F(t) is 

differentiable in [ , )k   and 
0

( ) ( , )
f

F t x t dx
t

 
 =

  t in [ , )k  . Since k is arbitrarily chosen, we 

conclude that 
0

( ) ( , )
f

F t x t dx
t

 
 =

 for (0, )t  . 

Let 

2sin ( )
,  if  0,

( , )

0,   if 0

xt x
e x

g x t x

x

−
− 

= 
 =

  

Then  
2

0 0

sin ( )
( ) ( , ) xt x

F t g x t dx e dx
x

 
− = = −  . 

Let 
2

0 0

sin ( )
( ) ( , ) xt x

G t g x t dx e dx
x

 
−= = −  .   Observe that 

2

0 0 0

sin ( )
( ) xt xt xkx

G t e dx e dx e dx
x

  
− − −=      for any k > 0.  As ( ) ( , )tg x g x t=  tends 

pointwise to the zero constant function, by the Lebesgue Dominated Convergence Theorem, 

lim ( ) 0
t

G t
→

= . 

Now, 2( , ) sin ( )xtg
x t e x

t

−
=


for x > 0,  (0, ) 0

g
t

t


=


 for 0t  . 

As for the case of ( , )f x t , 2

0 0
( , ) sin ( )xtg
x t dx e x dx

t

 
−

=
  converges absolutely and 

uniformly in t in [ , )k  . Thus, by Theorem 2, G(t) is differentiable on [ , )k   and hence on 

(0, )  with 

                    
2

0 0
( ) ( , ) sin ( )xtg

G t x t dx e x dx
t

 
−

 = =
   

Now, for t > 0, 

2 2

0 0
0

1 1
sin ( ) sin ( ) 2sin( )cos( )xt xt xte x dx e x e x x dx

t t


 

− − − 
= − + 
 

    

       
0

1
sin(2 )xte x dx

t


−=    

       
2 2 20 0

0

1 1 2
sin(2 ) 2cos(2 ) cos(2 )xt xt xte x e x dx e x dx

t t t


 

− − − 
= − + = 
 

   



       
2 3 0

0

2 1 2
cos(2 ) ( 2sin(2 ))xt xte x e x dx

t t t




− − 
= − + − 

 
   

       
3 3 0

2 4
sin(2 )xte x dx

t t


−= −  . 

Therefore,  
3 30

1 4 2
sin(2 )xte x dx

t t t


− 

+ = 
 

 .  

Thus, 
2

2

3 2 20 0

1 2 2
sin ( ) sin(2 )

4 (4 )

xt xt t
e x dx e x dx

t t t t t

 
− −= = =

+ +   .   

Hence, 
2

3 2 2

2 2
( )

4 (4 )

t
G t

t t t t
 = =

+ +
 for t > 0.   Now, 

2 2

2 1

(4 ) 2 2(4 )

t

t t t t
= −

+ +
 , taking 

antiderivative, we get 
2ln( ) ln(4 )

( )
2 4

t t
G t C

+
= − + .   Then 

       ( )
2 2

2

ln( ) ln(4 ) 1 1
lim ( ) lim limln ln 1

2 4 4 4 4t t t

t t t
G t C C C C

t→ → →

   +
= − + = + = + =   

+   
. 

Since lim ( ) 0
t

G t
→

= , C = 0.   Hence, 

                          
2ln( ) ln(4 )

( )
2 4

t t
G t

+
= − . 

It follows that 
2

0

ln( ) ln(4 )
( ) ( , ) ( )

2 4

f t t
F t x t dx G t

t

  +
 = = = −

  for t > 0.   Taking 

antiderivative, we have,           

                  
2 11 1

( ) ln( ) ln(4 ) tan
2 4 2

t
F t t t t t C−  

= − + − + 
 

. 

Taking limit as t tends to infinity, 

2 11 1
0 lim ( ) lim ln( ) ln(4 ) lim tan

2 4 2t t t

t
F t t t t t C−

→ → →

    
= = − + − +    

    
 

   
2 2

2 2

2

2 2

1 1 1 84lim ln lim lim
14 4 2 4 2 4 (4 ) 2t t t

t

t tt tt C C C
t t

t

  

→ → →

 
−    += − + = − + = − − +    

+ +    −
 

     

  0
2 2

C C
 

= − + = − . 

Thus, 
2

C


=  and so, for t > 0, 

            
2

1 2

20

sin ( ) ln( )
( ) tan ln(4 ) .

2 2 4 2

tx x t t t t
e dx F t t

x


− −  

= = − − + + 
 

  



We may also use the limit F(t) as t tends to 0 on the right.  Note that ( )tf x  on the domain 

[0, )  is monotone increasing and non-negative and each ( )tf x  is Lebesgue integrable on 

[0, )  and so by the Lebesgue Monotone Convergence Theorem as ( )tf x  converges 

pointwise to 0 ( )f x , 
0

( ) ( )tF t f x dx


=   converges to
2

0 20 0

sin ( )
(0) ( )

2

x
F f x dx dx

x

 

= = =  . 

This would give the integration constant C to be  
2


.   Taking the limit of ( )F t as t tends to 

infinity is better in the sense that we avoid evaluating 
2

20

sin ( )x
dx

x



 and the limit of ( )1tan t−  

as t tends to infinity is more familiar. 

In particular,  

2
1

20

sin ( ) 1 ln(5)
(1) tan

2 2 4

x x
e dx F

x


− −  

= = − − 
 

  and 
2

0

sin ( ) ln(5)
(1)

4

x x
e dx G

x


− = = − .   
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