Integration Using Differentiation Under The Integral Sign
By Ng Tze Beng

We give examples of how differentiation under the integral sign can be used to evaluate
improper integrals.

We are going to use two versions of the differentiation under the integral sign, a proper
Riemann integral version and an improper Riemann integral version, which are Theorem 59
and Theorem 60 of [1] Chapter 14, Mathematical Analysis, An Introduction in My Calculus
Web.

Theorem 1. Suppose one of the following two conditions (i) and (ii) is satisfied.

(1) f:[c,d]x[a,b] > Ris a continuous function such the partial derivative %(x,t) exists
for all (x, t) in [c, d] x [a, b] and is continuous on [c, d] x [a, b].

(i) f :(c,d)x[a,b] — Ris a continuous function such that the partial derivative %(x,t)

exists for all (x, t) in (c, d) x [a, b] and is continuous on (c, d ) x [a, b] and that for each t in
[a, b], the function f,(x) = f (x,t) is Lebesgue integrable on (c, d). Suppose there exists a
of
—(x,t
pn (x,t)

Lebesgue integrable function g on (c, d) such that <g(x) forall (x,t)in

(c,d)x[a,b].
Let F:[a,b] - R be defined by F(t)= " f (x,t)dx.

Then, F is differentiable and F'(t) :jcd%(x,t)dx for each tin [a, b].

Theorem 2. Suppose f :[c,o)x[a,b]— R is a continuous function such that the partial
derivative %(x,t) exists for all (x, t) in [c, ©) x [a, b] and is continuous on [c, ) x [a, b].
Suppose that the improper Cauchy Riemann integral r f (x,t)dx converges absolutely for
each tin [a, b]. Suppose that the Cauchy Riemann integral jj%(x,t)dx converges absolutely
for each tin [a, b]. Suppose furthermore the improper integral f%(x,t)dx converges
uniformly for tin [a, b].

Let F :[a,b] > R be defined by F(t) = Iw f (x,t)dx. Then F is differentiable and

F'(t) = j:’%(x,t)dx.

Example 1.

Fort>0, J'we*txwdx=z—tan’l(t). Iwwdx=£.
0 X 2 o X 2



We shall first consider the case t > 0.

_i SIN(X)
, X>0, . . .
Forx>0,t>0,let f(xt)= X . Then f is a continuous function on
1, x=0
[0,0) x[0,0) .
Caset> 0.

Forx>0,t>0, |f(x,t)<e™. Fixareal numbera> 0.

Let f,(x)= f(xt) .

Then for t > 0, since '[Owe’txdx = Iim{—}e“} _i Iim}e*ts = % -0= % the improper

S—» t 20 t s—w {

Riemann integral J': f.(x)dx = I: f (x,t)dx is absolutely convergent for t in (0, a]

Fort=0, [ f,09dx= [ 3" gy =T gince [~ gy i condiitionall t it
ort= ,IO 0 —jo — =3 ince jo — is conditionally convergent, i

IS not a Lebesgue integral.

. = = = SIN(x)
Define F(t)__[O ft(x)dx__[0 f(x,t)dx_.fO e de.
Since .[w|f(x t)|dx<'[we*txdx:} fort>0and Iim}=0 limF(t)=0
0 ' —Jo t t—>o { " tow '

It is easily seen that for x > 0, the partial derivative, %(x,t) =—esin(x). We also have,

of of of :
5(0,0 =0, E(O’O) :O’E(X'O) =—sin(x).

Hence, we can write for x >0,t> 0, %(x,t) =-eMsin(x). Forx>0,t>0, ‘%(x,t) <e™

t

. . : f i .
and since e ™ is Lebesgue integrable for t > 0 on [0, ), g—t(x,t) is Lebesgue integrable for

each t> 0 on [0, «0). Therefore, j:%(x,t)dx is absolutely convergent for t in [k, K], for any

k>0and any K > k.
Note that, fort> 0,

Jj% (xt)dx = [ e sin(x)dx = —cos(x)e ™ ] —t[ e™ cos(x)dx

=1-cos(s)e™ —t {[sin(x)e‘Xt ]:Z + j:sin(x)te‘Xtdx}

=1-cos(s)e ¥ —tsin(s)e ™™ —tzjossin(x)e‘“dx .



Therefore, I: e sin(x)dx = I 1t2 (1—cos(s)e’St —tsin(s)e’“). Hence,
+

= Of N IRV BT S Xt i 1 —st : —st
jo a(x,t)dx_J‘0 e sm(x)dx_!Lrgjoe sin(x)dx = = (1-cos(s)e ™ —tsin(s)e )

B 1
1+t2

Fort=0, j:%(x,O)dx = I:sin(x)dx and is not convergent.

Note that

of i . o .
5(x,t)‘ =|-esin(x)|<e™ <e™ for t>k and since IO e~*dx is convergent

and independent of t, we can conclude that the improper Riemann integrals, j:%(x,t)dx
converges absolutely and uniformly with respect to t in [k, «) and hence in [k,K].

By Theorem 2, by considering f (x, t) with domain [0,%) x[k, K], F is differentiable at t in
[k, K]and

F'(t) = j (xt)dx_—j e sin(x)dx =

By taking arbitrary k > 0 and any K > k, we conclude that F is differentiable for all t > 0 and
F'(t) =

F(t)-F(c)=— :1+1u2 du=—[tan(u) ] =tan"*(c) ~tan"*(t).

This means F(t) =tan™(c) —tan*(t) + F(c) forall 0 <t<c. But limF(c)=0 and so
. -1 1 . T -1
F(t) =limtan~(c) —tan—(t) + limF(c) :E—tan ().

L~ Sin(X) dX — z

Hence, L e —tan"'(t).

Caset=0.

Firstly, we check that I )

dx is convergent.

Fort>s>0,

J~I sinx) 4. [_ cos(X) T _J-t cOS(X) . _ COS(s) _ cos(t) _J‘t cos(x) 4.
S X2 ’

s X X s x° S
Therefore,

_4 S — ()

S

Jtsm(x) dx

s X




sin(x)
=landifwelet g(x)=4 x ' then
1, x=0

Note that I|m sin(x)

x>0t X
j‘”wdx—j‘” (x)dx
0o X ~Jo g '

Given &> 0, let N be an integer so that %< g Therefore, for any t >s>N, by (1),

Itsm(x) dx

2
<—<
s X N

S

It follows by Theorem 2 Chapter 14 that Iow g(x)dx exists and so Jj@dx IS convergent.

We also have that

lim J.HM&)EX) AX=0. --mmmeeseeemeeeeccceeeeeeceeeeeeenas )

Now we define for n > 0,

H, ()= jon f.(x)dx = _[On f(x,t)dx = J’O”e_tx Sin)Ex) dx.

Plainly,
n 1 1 2y 1
H)|<| e™dx=|-=e™| ==(1-e" |<=.
| n( )| IO [ n l n( ) n
Since %—) 0 , it follows by the Comparison Test that,
limH (n)=0. ------mmemmmeee —-mmeee- (3)

By Theorem 1 part(i), taking the domain of f (x,t) as [0,n]x[0,K] forany K>t>0,
' . n 8f . N -
H.'(t) = jo ~ (o 0dx= —jo e *sin(x)dx.
Now,
J e " sin(x)dx = [ cos(x)e‘tX —t j e ™ cos(x)dx
=1-cos(n)e ™ —t{[sin(x)etX ]; + tjon g™ sin(x)dx}
=1-cos(n)e ™ —tsin(n)e™ —tzjon e " sin(x)dx .

Hence, for t > 0, (1+t2).[0n e %sin(x)dx =1—cos(n)e ™ —tsin(n)e " so that

—e " (cos(n) +tsin(n))

(1+t2)

jo" e sin(x)dx = =




e™"(cos(n) +tsin(n))—

Thus, fort>0, H '(t) =

(1+t2)
Taking limit as n tends to infinity, for all t > 0,
. ' 1
limH_(t)=- e 4
oo 1 ( ) (1+t2) ( )

Observe that for all t > 0,
tn

‘H (t)‘ 1+t)+1_e (l+t2)+1£ 2 |

) (1+t ) (1+t2)

Therefore, H,'(t) is dominated by on [0, «0) which is Lebesgue integrable on [0, ).

2
(1+1)
Now we are going to employ Lebesgue Dominated Convergence Theorem.
For each integer n> 1, let

gn = Hn,l[o,n] !
where y,,is the characteristic function on the interval [0, n].

Then plainly, for t > 0,

i . ' 1
limg, () =limH,'(t) =~
Eachgni
0.
Moreover, |gn(t)| S‘Hn'(t)‘ < Note that j ————dt is absolutely convergent.

=) )

Hence, by the Lebesgue Dominated Convergence Theorem,

T

lim [ g, (t)dt = |imjo” H.'(t)dt = >

But [ H.'(t)dt=H (n)—H (0). So, taking limit we have, by (3),
[ H, ®dt=H, :
—%zIiijan'(t)dtzIimHn(n)—IimHn(0)=O—IimHn(0)=—limHn(0).

sm(x) sin(x) 4 _ 7 = Sin(Xx) ax= "

. . T
This means L'ﬂl H. (0) =? That is to say, Ilmj 5 Hence, IO

Thus, for all t> 0, J': e ™ w dx = E —tan*(t)



Example 2. Foranytin R, jowe’xz cos(2tx)dx = getz :

Let f(x,t)=e> cos(2xt). Then fisa continuous function on [0,c0) x (—o0, +o0) . Moreover,
|f(xt)|<e™ forallx>0andalltin R.

The partial derivative %(x,t) =—2xe™ sin(2xt) exists forall x>0and all tin R..

Since I:e‘xzdx is convergent, the improper Riemann integral

J:O f(x,)dx = J':e*XZ cos(2xt)dx is absolutely convergent and f,(x) = f(x,t) is Lebesgue

integrable on [0, o).

Also, we have that %(x,t) <2xe™ forall xin [0, ) and all tin R and g(x)=2xe* isa

Lebesgue integrable function on [0, o). It follows that the improper Riemann integral
j:%(x,t)dx converges absolutely and uniformly for t in (—oo,). In particular, it converges
uniformly for t in [-a,a] for any a > 0. Therefore, by Theorem 2,
0 © 2 , _ 0 af _ © x2 .
F(t) :jo f(x,t)dx :IO e cos(2xt)dx, F'(t) —'[0 X f(x,t)dx_—'[O 2xe™* sin(2xt)dx for
any tin [-a,a]. Since ais arbitrary, forall teR,
F'(t)= —J? 2xe ™ sin(2xt)dx .

Now, forany t >0,

'[S—er*XZ sin(2xt)dx = [e”z sin(2xt)}S - the’Xz cos(2xt)dx
0 0 0

= e sin(2st) - 2tj: e cos(2xt)dx .
Hence,
["—2xe sin(2xt)dx = lim jo —2xe™ sin(2xt)dx = lime™ sin(2st) — 2t lim J’O e cos(2xt)dx
=0-2t I : e cos(2xt)dx = —2tJ'O°O e cos(2xt)dx .
That is,
F'(t) =-2tF(t) .

Hence, F(t) is a solution of the differential equation

dy
2=y .
dt d

Solving this equation by the method of variable separable gives
y= e K for some constant K

and K=y(0).



Thus, we have F(t)=F(0)e™" .

Jr

Now F(0) = j: f(x,0)dx = _[: e *dx = - Therefore,

F(t) =IO e cos(2xt)dx :Te :
Example 3.
A2
Fort>0, .f g N Z(X) dx=£—tan1(tJ —In(4+t%) + tIn(t). In particular,
0 X 2 2 2
H)
I g 20 2(x) dx=2—tan™ [l)__ln(S) :
0 X 2 2 4
L SIN%(X) 0
Forx>0,t>0,let f(xt)= x2 " . Then fis a continuous function on
1, x=0
[0,0) [0, 0) .

Forx>0,t>0, |[f(xt)<e™. Let f(x)="f(xt).

Then for t > 0, since '[Owe“xdx = Iim[—%e“x} _i Iimle‘ts = % -0= % the improper

S—0 0 t

Riemann integral j: f.(x)dx = J.: f (x,t)dx is absolutely convergent for t > 0.

. 2
Fort=0, I f,(x)dx —j sin (X) dx _E Since w is Lebesgue integrable on [0, ).

this means IO f.(x)dx is improperly Riemann integrable and Lebesgue integrable for all t >
0.

]
Define F(t):J.0 ft(x)dx:J'O f(X,t)dsz o™ SmXZ(X) dx

SlnceJ‘ | f(x, t)|dx<_[ e dx = fort>0and I|m——0 IlmF(t) 0.

It is easily seen that for x > 0, the partial derivative, %(x t)y=—e sin (X) . We also have,
of of of sin(x)
—(0,t)=0, —(0,0)=0,—(x,0) =——=.
8t( ) at( ) p (x,0)
Hence, we can write for x >0, t> 0, ‘th (X, t)‘ ‘ e ™ sin (X) <e™. Takeanyk>0.
X




Then forany t >k and x>0, tx > kxand so

of
E (X,t)

<e™ and since %(O,t) =0,

%(x,t)

converges absolutely and uniformly in tin [k,) . Therefore, by Theorem 2, F(t) is

<e*forany t>kand x>0. Since I: e“dx is convergent, J‘:%(x,t)dx

differentiable in [k,©) and F'(t) = J —(x t)dx tin [k,0) . Since k is arbitrarily chosen, we
conclude that F'(t) :j —(x,t)dxfor te(0,0).
0 ot
—xt Sinz(X)

Let g(x,t)= - X
0, ifx=0

, If x>0,

ey [* e SIN°(X)
Then F(t)_j0 g(x,t)dx_—joe -

Let G(t) = J. g(x, t)dx—j ‘X‘de Observe that
X

I - sin (x)

IG(t)| = x| < .[Ow e dx < J.:e‘Xkdx forany k> 0. As g,(x)=g(x,t) tends

pointwise to the zero constant function, by the Lebesgue Dominated Convergence Theorem,
!im G(t)=0.

Now, %g(x,t) =e ™sin®(x) for x>0, %g(o,t) =0 for t>0.

As for the case of f(x,t), J':%g(x,t)dx = J.:e‘x‘ sin®(x)dx converges absolutely and

uniformly in tin [k,0) . Thus, by Theorem 2, G(t) is differentiable on [k,«) and hence on
(0,0) with

G'(t)= J':%g (x,t)dx = LOO e sin?(x)dx
Now, for t > 0,

.[: e sin®(x)dx = {—%e‘“ sin’ (x)} + .f:%e‘“ 2sin(x) cos(x)dx
0

©l .
J-OEe sin(2x)dx

_ 1—Xt' - o1 —xt _Zoo—xt
_[_t—ze sm(2x)}0 +'|.O t—ze 2cos(2x)dx—t—zj‘0 e cos(2x)dx



_ 2 1 —xt ” 2 *© —xt H
_t—z[—fe cos(2x)l+t—3 jo e (=2sin(2x))dx

_2_ ij: e sin(2x)dx .

2t

1 4\pe . 2
Therefore, (E+t_3j-[° e sm(2x)dx_t—3

oo : w1 2t 2
Thus, | e™sin*(x)dx = “sin(2x)dx = — :
L ) It = ae "4+t
2
Hence, G'(t):g3 ! > = 2 >~ fort>0. Now, %:1— >~ , taking
t°4+t°  t(4+t9) t(4+t°) 2t 2(4+t°)

In® @+t o o

antiderivative, we get G(t) =

2 2
limG(t) = lim| MO MG 6 Liiin i =tim)+c=c.
t—o0 t—o0 2 4 4 tox 4+t 4

Since !imG(t) =0,C=0. Hence,

. |n§t) B In(4:t )

In(4 +t?)

It follows that F'(t) = j:%(x,t)dx =G(t) = In(®) _

5 fort>0. Taking

antiderivative, we have,
1 1 t
F(t)==tIn(t)—=tIn(4+t*)—tan'| = |+C.
(© = 2tin® - Ltin@a 1) [zj
Taking limit as t tends to infinity,

L (1 1 2 . ot
O_ELrg F(t)_!Lrg(atln(t)—ztln(4+t )]—!Lrg(tan (EDJFC

2 o
2 PR
“Liim[tin| - | |- Z = tiim| 4 | Tl Ly B T c
aeml M ave ) 27T T T2 150 @1t 2
t?
~0-Z4+c=c-Z.
2 2

Thus, C :% and so, fort> 0,

e SIN (x) t tln(t)
_[Oe - dx _F(t)—— tan” [2) ~In(4+t2) + >



We may also use the limit F(t) as t tends to 0 on the right. Note that f,(x) on the domain
[0,e0) is monotone increasing and non-negative and each f,(X) is Lebesgue integrable on
[0,e0) and so by the Lebesgue Monotone Convergence Theorem as f,(x) converges

22
pointwise to f,(x), F(t) =.[0 f,(x)dx converges to F(0) :IO fo(x)dx:j0 il Z(X)dx :%.
X

This would give the integration constant C to be % Taking the limit of F(t) as t tends to
e . : . rosin®(x) . o
infinity is better in the sense that we avoid evaluating IO ———dx and the limit of tan™(t)

X

2
as t tends to infinity is more familiar.
In particular,

[(er SN () g - F(1)=f—tanl(3j—@ and e S0 gy gy = 1N
0 X 2 2 4 0 X 4
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