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Introduction.  

Following a series of articles on the de La Vallée Poussin Decomposition, we 

shall consider the Lebesgue Stieltjes measure generated by a function of 

bounded variation g.  We have similar decomposition involving the measure of 

the image of the total variation function of g, the measure of the images under 

the positive and negative variation functions of g and of course the Lebesgue 

integral of the derived function of g.  All Borel subsets are Lebesgue Stieltjes 

measurable.  Not all continuous image of a measurable set is measurable.  As 

the continuous image of a Borel set is measurable, we shall confine ourselves 

mostly on Borel sets.  We have, in the previous articles, described the measure 

of a measurable set under the total variation function of the function of bounded 

variation.  The present article will give a better picture of the measure of the 

image of a measurable set under a function of bounded variation or its total 

variation function or its positive variation function or its negative variation 

function, albeit with some constraint that the measurable set be Borel. Lebesgue 

Stieltjes integral is defined in the usual manner via Lebesgue Stieltjes measure.  

We present a generalized version of integration by parts (with correction term) 

for the Lebesgue Stieltjes integral for functions of bounded variation.  We 

present versions of change of variable for the Lebesgue Stieltjes integral when 

the measure is generated by the composition of two increasing functions. Detail 

and complete proofs are presented.   

Lebesgue Stieltjes Measure 

We shall introduce the Lebesgue Stieltjes measure in stages.  We begin by 

defining it for an increasing function and then proceed to define it for function 

of bounded variation.   

Definition 

Suppose I is an open interval and :g I →  is an increasing function.  Let   be 

the family of all intervals (a, b), with a, b  I and a < b.  Define 

                                     : [0, ) →   
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by ( )( , ) ( ) ( )a b g b g a = −  for ( , )a b  .   When a = b, (a, b) = , we define 

( ) ( )( , ) 0 ( ) ( )a b g b g a =  = = − . 

We define the Lebesgue Stieltjes outer measure generated by g on the collection 

( )I  of all subsets of I,  *: ( ) [0, ]g I  →   by     

                 ( )
1 1

*( ) inf ( , ) : , , , ( , )g n n n n n n n n

n n

E a b a b I a b E a b 


= =

 
=    

 
 .   

We define ( )* 0g  = . 

We shall state some known results about the Lebesgue Stieltjes outer measure, 

*g . 

Proposition 1.  Suppose I is an open interval and :g I →  is an increasing 

function.  Then  *g  is a metric outer measure.  That is to say, if E, F  I are 

separated, i.e.,  ( , ) inf : , 0d E F x y x E y F= −    , then   

                           *( ) *( ) *( )g g gE F E F   = + . 

Proof.   Obviously, * 0g   and ( )* 0g  = .  If A B , then  ( ) ( )* *g gA B  . 

This is obviously true if A =  or *( )g B =  .  Now we assume that A   and 

*( )g B   .  For any  > 0, take a collection of  ( , )n na b such that 
1

( , )n n

n

B a b


=



and ( )
1

( , ) *( )n n g

n

a b B  


=

 + .  It follows that 
1

( , )n n

n

A a b


=

  so that 

( )
1

*( ) ( , ) *( )g n n g

n

A a b B   


=

  + .  Since  is arbitrarily chosen, we conclude 

that ( ) ( )* *g gA B  . 

We next show that *g  is  sub-additive.  Let  nA  be a countable collection of 

non-empty subsets of I.  Let 
1

n

n

A A


=

= .  If any one of ( )*g nA  is +∞, then we 

have nothing to prove. We may thus assume that ( )*g nA  +  for all n. Take 

coverings  ( , )n n

k ka b  such that 
1

( , )n n

n k k

k

A a b


=

  and ( )
1

( , ) *( ) 2n n n

k k g n

k

a b A  


−

=

 + .  

Plainly, 
1 1

( , )n n

k k

n k

A a b
 

= =

 . It follows that 
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             ( ) ( )
1 1 1 1

*( ) ( , ) *( ) 2 *( )n n n

g k k g n g n

n k n n

A a b A A     
   

−

= = = =

  + = +   .   

Hence, we conclude that 
1

*( ) *( )g g n

n

A A 


=

 .  Thus, *g  is an outer measure. 

Next, we shall show that *g  is a metric outer measure.  Take subset A, B in I 

such that  ( , ) inf : , 0d A B x y x A y B= −    .  Since g is increasing, for any open 

interval ( , )a b  with a < b and for any partition 0 1 Na a a a b=    = , we can 

write 

               ( ) 1 1

1 1

( , ) ( ) ( ) ( ) ( ) ( , )
N N

k k k k

k k

a b g b g a g a g a a a − −

= =

= − = − =  ,  

with 
1 ( , )k ka a d A B−−  , k = 1,2, …, N.  This means we can write ( , )a b  as a union 

 
1

1

1 1

( , )
N N

k k k

k k

a a a
−

−

= =

 . It follows that 1( , )k ka a−  can only meet one of A or B but not 

both and each ka  can only belong to one of A or B but not both.   

For any given  > 0, we can choose a covering  ( , )k ka b such that  

1

( , )k k

k

A B a b


=

   and ( )
1

( , ) *( )k k g

k

a b A B  


=

  + .  By the above deliberation 

the covering splits into two coverings one for A and one for B. It follows that 

( )
1

*( ) *( ) ( , ) *( )g g k k g

k

A B a b A B    


=

+    + .  As  is arbitrarily chosen, we 

can conclude that *( ) *( ) *( )g g gA B A B  +   .  It can be shown easily that 

*( ) *( ) *( )g g gA B A B    + .  Hence, *( ) *( ) *( )g g gA B A B   = + .  Therefore, 

*g  is a metric outer measure. 

Definition 2.  Suppose I is an open interval and :g I →  is an increasing 

function.  We say a set E  I is *g  measurable if it is *g  measurable in the 

sense of Caratheodory.  That is to say E is *g  measurable if  

                     *( ) *( ) *( )g g gF F E F E  =  + − , 

for any set F  I. 

Let B(I) be the Borel -algebra generated by the open sets of I.  (See 

Introduction to Measure Theory).  Members of B(I) are called Borel sets.  
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It turns out that the restriction of *g  to B(I) is a Radon measure, i.e. it is a 

positive measure, finite on compact set and is both inner and outer regular.   

We recall the definition of a Radon measure. 

Let X be a locally compact Hausdorff topological space.  Suppose M is a  - 

algebra of subsets of X, containing all the Borel sets of X and  is a positive 

measure on M.   

 is said to be outer regular if for all E  M,  

                     ( ) inf ( ) :  and  is openE V V E V =  .  

 is said to be inner regular if  for all E  M, such that either E is open or 

( )E   ,   ( ) sup ( ) :  and  is compactE K K E K =  .    

 is said to be regular if it is both inner and outer regular. 

Suppose B(X) is the  - algebra generated by the Borel sets of X and  : B(X) → 

[0, +∞] is a positive measure.  The positive measure  is said to be a Radon 

measure if  is regular and is finite on compact subsets of X. 

Recall the following theorem from Positive Borel Measure and Riesz 

Representation Theorem. 

Theorem 3. Let X be a locally compact Hausdorff topological space, in which 

every open subset is -compact.  Let  be any positive Borel measure on X such 

that ( )K    for any compact subset K in X.  Then  is regular.  Hence,  is a 

Radon measure on B(X). 

(For a proof of this theorem, refer to Theorem 5 of Positive Borel Measure and 

Riesz Representation Theorem.) 

Note that any open interval in  is a locally compact Hausdorff space, in which 

every open set is -compact. 

Theorem 4.   Suppose I is an open interval and :g I →  is an increasing 

function.  Every Borel set E B(I) is *g  measurable. 

Theorem 4 is a consequence of the fact that *g  is a metric outer measure.  

[See Theorem 11.5, page 283 of Wheeden Zygmund, Measure and Integral, An 

Introduction to Real Analysis.] 
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Theorem 5.  Suppose I is an open interval and :g I →  is an increasing 

function.  The restriction of *g  to B(I), g : B(I) → [0, ∞] is a Radon measure.  

Every Borel set in I is both inner and outer regular. 

Moreover, for any open interval (a, b)  I,  

                     ( ) ( )( , ) ( , ) ( ) ( ).g a b a b g b g a  = −   

( )[ , ] ( ) ( )g a b g b g a + −= −  for all a, b  I with a  b, where ( )g x+  denotes the right 

limit of g at x and ( )g x− denotes the left limit of g at x.  We also have that 

( )( , ] ( ) ( )g a b g b g a + += − , ( )( , ) ( ) ( )g a b g b g a − += − and ( ){ } ( ) ( )g a g a g a + −= − . 

Furthermore, if g is bounded,  

                         ( ) sup( ( )) inf ( ( ))g
x Ix I

I g x g x


= − . 

Thus, g  is finite if, and only if, g is bounded.  g  is unique in the sense that if 

there is a Radon measure  :  B(I) → [0, ∞] such that ( )( , ] ( ) ( )a b g b g a + += − , 

then g = . 

Proof. 

Note that *g  is a Borel outer measure by Theorem 4. 

By definition, for any open interval (a, b) in I, 

( ) ( )( , ) ( , ) ( ) ( )g a b a b g b g a  = −  .   Suppose K is a compact subset of I.  Then 

K is closed and bounded and there is a finite cover of K by open bounded 

intervals in I.  It follows that *( )g K  is finite. Hence, as I is locally compact, by 

Theorem 3, the restriction of *g to B(I) is a Radon measure.  Therefore, every 

Borel set is inner and outer regular.   

Suppose [a, b]  I.  Since the interval I is open, there exists an integer M such 

that 
1 1

[ , ] ,a b a b
M M

 
 − + 
 

.  Therefore, for all integer n ≥ M,  

                
1 1 1 1

([ , ]) ,g a b a b g b g a
n n n n

 
      

 − + = + − −      
      

. 

Letting n tends to infinity, we obtain ( ) ( )([ , ])g a b g b g a + − − . 
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Take any countable cover  ( , )n na b of [a, b] by open intervals in I.  Then 

1

[ , ] ( , )n n

n

a b a b


=

 .  Since 
1

( , )n n

n

a b


=

is open, [a, b] is contained in a union of finite 

number of these open intervals in the cover and so [a, b] is contained in a path 

connected open interval in the union of these finite number of open intervals. 

Hence, there exists an  > 0 such that [ , ]a b − +  is contained in this open path 

component and so 
1

[ , ] ( , )n n

n

a b a b 


=

− +  .  We claim that the set   
1

( ), ( )n n

n

g a g b


=

 

covers ( )( ), ( )g a g b − + .  Take  ( )( ), ( )y g a g b  − + . Then since g is increasing, 

there exists [ , ]x a b  − +  such that  ( ), ( )y g x g x− + .  As 
1

[ , ] ( , )n n

n

a b a b 


=

− +  , 

( , )k kx a b  for some integer k.  Therefore, we have 

                         ( ) ( ) ( ) ( )k kg a g x y g x g b− +     

and so  ( ), ( )k ky g a g b  and  
1

( ), ( )n n

n

y g a g b


=

 . Therefore, 

( )  ( )  
1 1 1

( ) ( ) ( ), ( ) ( ), ( )n n n n n n

n n n

g b g a m g a g b m g a g b
 

= = =

 
− =   

 
    

                   ( )( ), ( ) ( ) ( ) ( ) ( )m g a g b g b g a g b g a    + − − + = + − −  − . 

Hence, by definition of ([ , ])g a b , ([ , ]) ( ) ( )g a b g b g a + − − .  It follows that 

([ , ]) ( ) ( )g a b g b g a + −= − .   

If g is bounded, then using the fact that ([ , ]) ( ) ( )g a b g b g a + −= − for [a, b]  I, by 

taking a sequence  na  such that infna I  and a sequence  nb  such that 

supnb I , we conclude by the continuity from below property of outer measure, 

that 

           ( )( ) lim ([ , ]) lim ( ) ( ) sup( ( )) inf ( ( ))g g n n n n
n n x Ix I

I a b g b g a g x g x  + −
→ → 

= = − = − .  

Observe that if a = b, from ( )[ , ] ( ) ( )g a b g b g a + −= − , we deduce that  

                                     ( ) ( ) ( )g a g a g a + −= − . 

Since g is a Borel measure, if a, b I with a < b, then 

      ( )(( , ]) ([ , ]) ( ) ( ) ( ) ( ) ( ) ( ) ( )g g ga b a b a g b g a g a g a g b g a   + − + − + += − = − − − = −   

and  
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     ( )(( , )) (( , ]) ( ) ( ) ( ) ( ) ( ) ( ) ( )g g ga b a b b g b g a g b g b g b g a   + + + − − += − = − − − = − . 

Now the -algebra generated by the half open intervals ( , ]a b  in I is the Borel -

algebra B(I).  Note that  and g   are both -finite.  Therefore, since the 

collection of  half open intervals ( , ]a b  in I is a -system, by Corollary 4 of 

Product Measure and Fubini’s Theorem, g = . 

Theorem 6.  Suppose I is an open interval and :g I →  is an increasing 

function.   For any set E  I, *( ( )) *( )gm g E E , where m* denotes the 

Lebesgue outer measure on .  Moreover, if E  I is such that g is continuous 

at all points of E, then *( ( )) *( )gm g E E= . 

Proof.   

Let E  I.   If *( )g E = + , then plainly *( ( )) *( )gm g E E  and we have nothing 

to prove. 

Now, we assume that *( )g E   . 

For a given arbitrary  > 0, take a covering  ( , )n na b of E by open intervals in I 

such that  ( ) ( )
1 1

( , ) ( ) ( ) *( )n n n n g

n n

a b g b g a E  
 

= =

= −  +  .  Since g is increasing, 

 
1

( ), ( ) ( )n n

n

g a g b g E


=

 . Therefore,   

                   ( )  
1

* ( ) * ( ), ( )n n

n

m g E m g a g b


=

 
  

 
 

                                 ( ) ( )
1 1

( ), ( ) ( ) ( ) *( )n n n n g

n n

m g a g b g b g a E 
 

= =

 = −  +  . 

Since  is arbitrarily chosen, we conclude that *( ( )) *( )gm g E E . 

Suppose now g is continuous at all points of E.  We shall show that 

*( ) *( ( ))g E m g E  .  If *( ( ))m g E = + . Then we have nothing to show. 

Now, assume that *( ( ))m g E  + . 

Take an open interval U in . Consider its preimage 

  1: ( ) ( )F x E g x U g U E−=   =  .  We shall show that  *( ) ( )g F m U  .  If U is 

unbounded, then we have nothing to show.  We now assume that U is bounded 

and ( ),U c d= .  Let infa F=  and supb F=  so that [ , ]F a b .  It is possible that 
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a =− and  b = + .  For all x in F, ( ) ( , )g x c d .  Thus, ( )g b d−   and  ( )g a c+  .  

As g is continuous at x in F,  *( ) 0g x = .  Therefore, if a F ,  *( ) 0g a =  and 

if b F ,  *( ) 0g b = .  Hence, 

                    ( )*( ) * ( , ) ( ) ( ) ( )g gF a b g b g a d c m U  − + = −  − =  .  ------------- (*) 

Since *( ( ))m g E  + , for any fixed  > 0, we can cover g(E) by a countable 

collection of open intervals  jU  such that  
1

( ) j

j

g E U


=

  and                                                                                                        

1

( ) *( ( ))j

j

m U m g E 


=

 +  . 

For each integer j ≥ 1, let   1: ( ) ( )j j jF x E g x U g U E−=   =  .  Then by (*), we 

have, since 
1

j

j

E F


=

 , 

                  
1 1

*( ) *( ) ( ) *( ( ))g g j j

j j

E F m U m g E  
 

= =

   +  . 

Thus, as  is arbitrarily small, we conclude that *( ) *( ( ))g E m g E  .  Therefore, 

if g is continuous at every point of E, then *( ) *( ( ))g E m g E = . 

Let I be an open interval. Denote ( )BV I  to be the collection of all function on I 

which is of bounded variation on I. 

Definition 7. 

Suppose now :g I → is of bounded variation on I, i.e., g  BV(I), the 

collection of all functions of bounded variation on I.   Then we know g is the 

difference of two increasing bounded functions (see Theorem 6 of Functions of 

Bounded Variation and de La Vallée Poussin's Theorem).  Let g  be the total 

variation function of g defined using an anchor point a  I as in Functions of 

Bounded Variation and de La Vallée Poussin's Theorem.   Then 

           ( ) ( )1 2

1 ( ) 1 ( )
( ) ( ) ( )   and  ( ) ( ) ( )

2 2 2 2
g g

g a g a
x x g x x x g x   = + − = − +     

are the positive and negative variation functions of g.  More precisely, 

                1 2( ) ( ) ( ) ( ) ( ) ( )g x x x P x N x g a  = + = + − , 

                1 2( ) ( ) ( ) ( ) ( ) ( )g x P x N x g a x x = − = + − , 
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where 1( ) ( ) ( )P x x g a= +  and 2( ) ( )N x x= .   Note that 1 2 and    are as defined in 

Functions of Bounded Variation and de La Vallée Poussin's Theorem.  Note 

that ( ) ( )
1 1 1 1

( ) ( ) ( ) ( )  and ( ) ( ) ( ) ( )
2 2 2 2

g gP x x g x g a N x x g x g a = + + = − +  are both 

increasing functions. 

Thus, we can define the signed Lebesgue Stieltjes measure, 

                            g  : B(I) → [−∞, +∞], 

by g P N  = − .    

Theorem 8.  Suppose I is an open interval and :g I → is of bounded variation 

on I.  Then  g  is a unique finite signed Radon measure such that  

                                 ( )( , ] ( ) ( )g a b g b g a + += − , 

for all a, b  I with a  b.   Furthermore, 
gg    and ( )g I   Total variation 

of g on I.  If g is right continuous, then 
gg  = . 

Proof.  By Theorem 5, g  is a signed finite Radon measure and so it is a real 

Borel measure. 

For any a, b in I with a < b we have  

        ( ) ( ) ( ) ( )( , ] ( , ] ( , ] ( ) ( ) ( ) ( )g P Na b a b a b P b P a N b N a   + + + += − = − − −  

                      ( )( ) ( ) ( ) ( ) ( ) ( )P b N b P a N a g b g a+ + + + + += − − − = − . 

Suppose  : B(I) → (−∞, + ∞) is a signed finite Radon measure satisfying, 

( )( , ] ( ) ( )a b g b g a + += −  for any a, b in I with a < b.  Then take the Jordan 

decomposition of ,   + −= − .  Since   is a finite measure,  and  + −  are 

positive finite measure.  Therefore, 

                 ( ) ( ) ( ) ( ) ( )( , ] ( , ] ( , ] ( , ] ( , ]g P Na b a b a b a b a b    + −= − = −  . 

It follows that  ( ) ( ) ( ) ( )( , ] ( , ] ( , ] ( , ]P Na b a b a b a b   − ++ = +  and so  

                        ( )( ) ( )( )( , ] ( , ]P Na b a b   − ++ = + . 

Since ( ) ( ) andP N   − ++ +  are positive finite measures which agree on any 

( , ]a b  in I, we conclude that ( ) ( )=P N   − ++ +  and so 
g P N     + −= − = − = .   

This proves the uniqueness of g . 
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Now we claim that 
gP N v  + = .   For any a, b in I with a < b. 

    ( )( ) ( ) ( )( , ] ( , ] ( , ] ( ) ( ) ( ) ( )P N P Na b a b a b P b P a N b N a    + + + ++ = + = − + −  

                             ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P b N b P a N a P N b P N a+ + + + + += + − − = + − +  

                                  ( ) ( ) ( , ]
gg g vb a a b  + += − = . 

We deduce as before that 
gP N v  + = . 

Therefore, for any Borel set E in I,  

           ( ) ( ) ( ) ( ) ( ) ( )
gg P N P N vE E E E E E     = −  + =  . 

It follows then, by the definition of the total variation measure g , of  g , 

gg   .  Hence, ( ) ( ) sup( ( )) inf ( ( ))
gg g g

x Ix I

I I x x   


 = − = total variation of g on I. 

Suppose now g is right continuous on I.   Take a, b in I with a  b. 

Take any partition 0 1 na x x x b=    = .  Then 

                  ( )1 1

1 1

( ) ( ) ( , ]
n n

i i g i i

i i

g x g x x x− −

= =

− =  , since g is right continuous,    

                                            ( )( , ]g a b . 

It follows that ( )( ) ( ) ( , ]g g gb v a a b −  .  As g is right continuous, g  is also right 

continuous.  Hence, ( )(( , ]) ( ) ( ) ( , ]
gv g g ga b b v a a b  = −  .  We have already shown 

that 
gg    and so ( )(( , ]) ( , ]

gv ga b a b =  and this implies that 
gg  = . 

Theorem 9.   Suppose I is an open interval and g  BV(I) is a right continuous 

function.  Then 
g P + =   and  

g N − = , where P and N are the positive and 

negative variation of g, g g g  + −= −  is the Jordan decomposition of the measure 

g  .  (See Theorem 13, Complex Measure, Dual Space of Lp Space, Radon-

Nikodym Theorem and Riesz Representation Theorems.) 

To prove this, we need the following result about associating a positive Radon 

measure to an increasing function. 

Theorem 10.  Suppose  : B(I) → [0, +∞) is a finite Radon measure.  Pick a 

point e in the open interval I and any point   in .  Define a function :g I →  

by   
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( )

( )

( , ] ,  if 
( )

( , ] ,  if  

e x x e
g x

x e x e








= + 

− 

. 

Then :g I →  is increasing and right continuous and 

                              ( )( ) ( ) ( , ]g b g a a b  − =  

for all a, b I, with a b. 

Proof.  Suppose E and F are Borel subsets in I and E F I  . We know that  

( ) ( )E F  . 

Thus, if  e x y   ,  ( ) ( )( ) ( , ] ( , ] ( )g x e x e y g x    = +  + = .  If x y e   ,  

( ) ( )( ) ( , ] ( , ] ( )g x x e y e g y    = −  − = .  If x e y  , then ( ) ( )g x g y   .  We 

can now conclude that g  is increasing. 

Now, we show that g is right continuous.  Take any x in I.  Take a sequence 

( )nx  such that nx  tends to x on the right.   Since g  is increasing we may assume 

that ( )nx is decreasing.  Suppose x e .  Then 
1

( , ] ( , ]n

n

e x e x


=

= .  By the continuity 

from above property of measure, since ( )( , ]ne x  , 

                  ( ) ( )
1

lim ( , ] ( , ] ( , ]n n
n

n

e x e x e x  


→
=

 
= = 

 
. 

If x < e, then 
1

( , ] ( , ]n

n

x e x e


=

= .  Therefore, by the continuity from below property 

of measure, 

                     ( ) ( )
1

lim ( , ] ( , ] ( , ]n n
n

n

x e x e x e  


→
=

 
= = 

 
. 

This proves that g is right continuous. 

Suppose a, b I, with a  b.  If a = b then obviously ( )( ) ( ) ( , ]g b g a a b  − = . 

Now assume that e a b  .  Then  ( ) ( ) ( )( ) ( ) ( , ] ( , ] ( , ]g b g a e b e a a b    − = − = .  If 

a b e  , then ( ) ( ) ( )( ) ( ) ( , ] ( ( , ] ( , ]g b g a b e a e a b    − = − − − = . If a e b  , then 

( ) ( ) ( )( ) ( ) ( , ] ( ( , ] ( , ]g b g a e b a e a b    − = − − = .  Hence, we have for a, b I, with a 

b,  ( )( ) ( ) ( , ]g b g a a b  − = .  

Proof of Theorem 9. 
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Suppose now 0x I  is the anchor point used in the definition of the total 

variation function gv  of g. (For reference see under Total Variation in Functions 

of Bounded Variation and de La Vallée Poussin’s Theorem.)  Plainly the 

function g and 0( )g g x−  generate the same Lebesgue Stieltjes signed measure.  

Without loss of generality we may assume that 0( ) 0g x = .      

Let g g g  + −= −  be the Jordan decomposition of the measure g . Since g is of 

bounded variation,  and g g + −  are positive finite Radon measures. Note that   

g g g  + −= + .  (See Theorem 13 of Complex Measure, Dual Space of Lp Space, 

Radon-Nikodym, Theorem and Riesz Representation Theorem.) 

By Theorem 10, we may find two right continuous functions u and w defined on 

I, with 0 0( ) ( ) 0u x w x= =  such that g u + =  and g w − =     Therefore, by Theorem 8, 

          
gv g g g u w     + −= = + = +    

               u w += ,  

by uniqueness of Lebesgue Stieltjes measure (Theorem 5). 

Hence, for 0x x ,  

          ( ) ( ) ( )0 0 0 0( ) ( ) ( , ] ( , ] ( ) ( )( )
gg g v u wx x x x x x u w x u w x    +− = = = + − + . 

As 0 0 0( ) ( ) ( ) 0g x u x w x = = = , we get ( )( ) ( )g x u w x = + for all 0x x .   

Similarly, for 0x x , from  

       ( ) ( ) ( )0 0 0 0( ) ( ) ( , ] ( , ] ( ) ( )( )
gg g v u wx x x x x x u w x u w x    +− = = = + − + , 

we deduce that ( )( ) ( )g x u w x = + .  Hence g u w = + . 

In a similar way using g g g u w    + −= − = − , and that for any a < b in I, by 

Theorem 8,  

                       ( )( , ] ( ) ( ) ( ) ( )g a b g b g a g b g a + += − = − , 

we can show that  g u w= − . 

It follows that ( )
1

2
gu v g P= + =  and ( )

1

2
gw v g N= − = , since 0( ) 0g x = .  Therefore, 

g P + =   and  
g N − = . 
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Proposition 11. Suppose ( )g BV I and I is an open interval.  For any set E  I, 

*( ( )) *( )
gvm g E E  . 

Proof.   

We show that for any set E  I, ( )*( ( )) * ( )gm g E m E .   Since g is a function of 

bounded variation, g is a bounded function and so g  is bounded. Therefore,  

( )* ( )gm E   .  Thus, given any  > 0, there exists an open set U such that 

( )gU v E  and ( )*( ) * ( )gm U m v E  + . 

Since U is open, U is a disjoint union of at most countable number of open 

intervals, i.e., n

n

U I= , nI  is an open interval and   

                           ( )
1

( ) ( ) * ( )i g

i

m U m I m v E 


=

=  +  .   

Moreover, 1( )g U E −  .  Let ( )1( )i g iA g I −= . For any x, y in iA , there exist 

1, ( )g ia b I − such that ( ) and ( )x g a y g b= = .  Then 

                ( ) ( ) ( ) ( ) ( )g g ix y g a g b a b m I − = −  −  . 

It follows that the diameter of iA  is less than or equal to ( )im I .  Hence, 

*( ) ( )i im A m I . 

Now, ( ) ( )1 1 1 1( ) ( ) ( ) ( )g g i g i g i

i i i

g E g v U g I g I g I  − − − −
    

 = = =    
    

. 

Therefore, 

           ( ) ( )( ) ( )1* ( ) * ( ) * ( ) *( ( ))g i i i g

i i i

m g E m g I m A m I m v E − =   +   . 

Since  > 0 is arbitrary, we conclude that ( )*( ( )) * ( )gm g E m v E .  Hence, 

( )*( ( )) * ( ) *( )
gg vm g E m v E E   by Theorem 6. 

This completes the proof of our assertion. 

 

Proposition 12.  Suppose g  BV(I), I is an open interval and g is continuous.  

Then g is absolutely continuous if, and only if, g m , the Lebesgue measure, 

i.e.,  g  is absolutely continuous with respect to the Lebesgue measure, m.  That 
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is to say, ( ) 0g E =  for all Borel set E  I with m(E) = 0.  (We are being cautious 

here.  Not all Lebesgue measurable set is g  measurable.) 

Proof. 

If g is absolutely continuous, then g is a Lusin function and so for any E  I 

with m(E) = 0, ( ( )) 0m g E =  and so by Theorem 9 of  Function of Bounded 

Variation on Arbitrary Subset and Johnson’s Indicatrix, ( ( )) 0gm E = .  It follows 

from Theorem 6 that *( ) *( ( )) 0
g gE m E = = .  If E is Borel, then 

*( ) ( ) ( ) 0
g gg E E E   = = =  and so ( ) 0g E = .  Hence, g m . 

Suppose g  is absolutely continuous with respect to the Lebesgue measure.  Let 

E be a set of Lebesgue measure zero.  Then there exists a G  set G such that 

E G and ( ) 0m G = .  Note that G is a Borel set.  Therefore, ( ) 0g G = .  This is 

true for all Borel subset of G. Thus, ( ) ( ) 0
gg G G = = and so 

( ( )) ( ) 0
ggm G G = = .  It follows that ( ( )) 0gm E = .  Hence, ( ( )) 0m g E = .  Thus, g 

is a Lusin function.  As g is a continuous function of bounded variation and the 

domain is an interval, by Theorem 15 of Absolutely Continuous Function on 

Arbitrary Domain and Function of Bounded Variation, g is absolutely 

continuous.  This completes the proof of Proposition 12. 

 

Suppose I is an open interval.  Denote the collection of all absolutely continuous 

functions on I by ( )AC I .     

Theorem 13.  Suppose g  AC(I) and I is an open interval.  Let [ , ]a b I .  Then 

for any Borel set [ , ]E a b , ( )g
E

E g =   , ( ) ( )
gv g

E
E E g  = =   and  

( )( ) ( )
gv gE m E = . 

Proof.   

Since g is absolutely continuous, g is absolutely continuous on [a, b].  

Therefore, by Lemma 2 of Absolutely Continuous Function on Arbitrary 

Domain and Function of Bounded Variation, g is of bounded variation on [a, b]. 

Moreover, the total variation function of g,  g  , is also absolutely continuous on 

[a, b].  (See Theorem 15 below.)  As ( ) 0

1 1
( ) ( ) ( ) ( ) 

2 2
gP x x g x g x= + + and 
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( ) 0

1 1
( ) ( ) ( ) ( )

2 2
gN x x g x g x= − + , it follows that the positive and negative variation 

functions, P and N of g are also absolutely continuous on [a, b].  Therefore,  

            ( ) ( ) ( ) ( ( )) ( ( ))g P NE E E m P E m N E  = − = −  , by Theorem 6, 

                     
E

g=   ,  

by Theorem 2 of A de La Vallée Poussin’s Decomposition, as P and N are Lusin 

functions by Lemma 3 of Absolutely Continuous Function on Arbitrary Domain 

and Function of Bounded Variation and are differentiable almost everywhere 

with respect to the Lebesgue measure. 

By Theorem 8, since g is right continuous, ( ) ( )
gg vE E = and so by Theorem 6, 

           ( ) ( ) ( ( ))
gg v gE E m E  = =  

                     
E

g=   ,  

by Theorem 1 of A de La Vallée Poussin’s Decomposition, since g is a Lusin 

functions and is differentiable almost everywhere with respect to the Lebesgue 

measure. 

 

We state the properties of the nature of the sets of discontinuity, 

differentiability, non-differentiability and infinite differentiability.  These are 

properties that help to understand the statements in the next few theorems.   The 

results are scattered in the literature and a comprehensive account, where all the 

statements and their proofs are present, seems to be difficult to find or 

unavailable and some proofs are only found in Russian.  The main secondary 

source is the article, Derivatives, by A. M. Bruckner and J. L. Leonard in the 

American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in Analysis 

(Apr., 1966), pp. 24-56.  Note that we shall use only the Borel property of the 

set involved and not necessary the Borel class it may or may not belong to. 

 

Theorem 14.  

(1) For a finite function, f, the set of points of discontinuity is a F  set. 

(2) For a finite function f, the set of points, where f has infinite derivative +∞ is 

F  and the set of points, where f has infinite derivative −∞ is F  and so are 

Borel.  
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 (3) The set of points where f has no finite derivative is of the form G G  , 

where G is of measure zero and the set of points where f has no derivative 

finite or infinite is also of  the form G G  , where G is of measure zero.  

Hence, they are Borel.  

(4) The set of points where a continuous f has finite differentiability is F  and 

hence Borel.  

(5) The continuous image of a Borel set is Lebesgue measurable. 

For the definitions of F , G , G and F  sets, we refer to Chapter XII in Set 

Theory, by K Kuratowski and A Mostowski or  Chapter Two Section 30 of 

Topology Volume 1 by K. Kuratowski.  

 

Reference to (1) and (4) can be found in Set Theory by Felix Hausdorff. 

A reference to (2) is V. M. Tsodyks, On sets of points where the derivative is 

equal to +∞ or −∞ respectively, (in Russian) Mat. Sb. (N.S.), 1957, Volume 

43(85), Number 4, 429–450. 

For (3), see Theorem 3.12 of the article by K M Garg, A Unified Theory of 

Bilateral Derivates, Real Analysis Exchange, Volume 27, Number 1 (2001), 81-

122. This is attributed to Zahorski and Brudno. 

For (5), we refer to Chapter 11, Theorem 11.18 of Thomas Jech’s Set Theory. 

 

It is also useful to note the following result concerning the absolute continuity 

of the total variation function of an absolutely continuous function, which is of 

bounded variation. 

Theorem 15.  Suppose A is a measurable closed and bounded subset of  or an 

interval and :f A→ is a finite valued function of bounded variation on A.  Then 

f is absolutely continuous, if and only if, :f A →  is absolutely continuous on 

A. 

Proof.  By Theorem 13 of Functions of Bounded Variation and de La 

Vallée Poussin's Theorem, f is continuous if, and only if f is continuous. 

So, we assume that f is a continuous function of bounded variation. 

Since ( ) ( ) ( ) ( )f ff y f x y x −  −  for any ,x y A , it follows that if f is 

absolutely continuous, then f is absolutely continuous. 
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We note that f is an increasing bounded function and so is of bounded 

variation. 

 

Suppose now f is absolutely continuous.  By Lemma 3 of Absolutely 

Continuous Functions on Arbitrary Domain and Function of Bounded 

variation, f is a Lusin function.   Since f is a function of bounded 

variation, by Theorem 10 of Function of Bounded Variation on Arbitrary 

Subset and Johnson’s Indicatrix, f  is also a Lusin Function.  

If A is closed and bounded, by Theorem 4 of Absolutely Continuous 

Functions on Arbitrary Domain and Function of Bounded variation, f is 

absolutely continuous since is a continuous function of bounded 

variation, which is also a Lusin function. 

Suppose A is an interval.   Since f  is a continuous bounded increasing 

Lusin function, by Theorem 15 of Absolutely Continuous Functions on 

Arbitrary Domain and Function of Bounded variation, f is absolutely 

continuous.  

 

Remark. 

We have the following criterion: 

If I is an interval, then a continuous function of bounded variation :g I → is 

absolutely continuous if, and only if, g  is absolutely continuous if, and only if, 

gv is absolutely continuous with respect to the Lebesgue measure m, if and only 

if, g  is absolutely continuous with respect to the Lebesgue measure, m. 

 

Theorem 16.  Let I be an open interval and ( )g BV I .  Suppose E is a Borel set 

in I and K is any real number in such that g is differentiable at every x in E, 

possibly infinitely and ( )g x K   for all x in E (respectively,  ( )g x K  ).  Then 

( ) ( )g E Km E  (respectively, ( ) ( )g E Km E  ).  In particular, if there exists g   on a 

Borel set E I  such that either ( ) 0m E =  or ( ) 0g x =  for all x in E, then 

( ) 0g E =  . 

Proof. 

If ( ) 0g x =  for all x in E, then by Theorem 11 of Arbitrary Functions, Limit 

Superior, Dini Derivative and Lebesgue Density Theorem, ( ( )) 0m g E = .  By 

f



18 

 

Theorem 10 of Function of Bounded Variation on Arbitrary Subset and 

Johnson’s Indicatrix, ( ( )) 0gm E = .  As ( )( ) ( ) * ( ) 0
gg v gE E m E   = = , ( ) 0g E = . 

Suppose g exists finitely on a Borel set E in I.  Then by Theorem 12 of 

Absolutely Continuous Function on Arbitrary Domain and Function of Bounded 

Variation, g is a Lusin Function on E.  If m(E) = 0, then ( ( )) 0m g E =  and it 

follows that ( ( )) 0gm E =  and ( )( ) ( ) * ( ) 0
gg v gE E m E   = =  so that ( ) 0g E = . 

Note that  and 
gg    are finite Radon measures. 

We begin by proving for the special case when E is contained in an open 

interval (c, d) in I. 

Thus, m(E) < ∞. 

Suppose g is differentiable at every x in E, possibly infinitely and ( )g x K   for 

all x in E. 

Let x E.   

                 
0

( ) ( )
( ) liminf : ( , ) lim

t x

g t g x
g x t c d b

t x


 +→ →

− 
 =  = 

− 
, 

where 
( ) ( )

inf : ( , ) ( , ) { }
g t g x

b t x x c d x
t x

  
− 

=  − +  − 
− 

.   

Suppose ( ) .g x k =    Note that ( )b g x
  as 0 + .   Therefore, if ( )g x k =   , 

given any  > 0, there exists   such that for all 0     ,  k b k   − .  This 

means that for all  ( , ) ( , ) { }t x x c d x  − +  −  and 0    , 

                                     
( ) ( )g t g x

b k K
t x

  
−

  −  −
−

. 

Hence, for 1 ( , ) ( , )t x x c d  − +   and 1t x , 1

1

( ) ( )g t g x
K

t x


−
 −

−
 so that 

                                        ( )( )1 1( ) ( )g t g x K t x−  − −  ------------------- (1). 

Similarly, for 2 ( , ) ( , )t x x c d  − +   and 2t x , 2 2

2 2

( ) ( ) ( ) ( )g t g x g x g t
K

t x x t


− −
=  −

− −
 

so that 

                                        ( )( )2 2( ) ( )g x g t K x t−  − −  ------------------- (2). 
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Combining (1) and (2) we get for 1 2, ( , ) ( , )t t x x c d  − +   and 2 1t x t  , and 

,0 x     =   

                        ( )( ) ( )1 2 1 2 1 2( ) ( )g t g t K t t K t t −  − − = − −   --------------- (3) 

If ( )g x = + , b +  as 0 + .    It follows that there exists ,x  such that for 

all ,0 x    ,  b K  − .  We deduce similarly, that for 1 2, ( , ) ( , )t t x x c d  − +   

with 2 1t x t   and ,0 x     =  ,  

                       ( )( ) ( )1 2 1 2 1 2( ) ( )g t g t K t t K t t −  − − = − − . 

For each integer n ≥ 1, let  

   1 2 1 2 1 2 1 2

1 1
: ( ) ( ) ( ) , , , , ( , ) { }nE x E g t g t K t t t x t t t x x c d x

n n


  
=  −  − −    − +  −  

  
. 

Plainly,  1n nE E + . 

We claim that 
1

n

n

E E


=

= . 

Take x E .  Then there exists  , 0x   such that for ,0 x     = ,  

1 2, ( , ) ( , )t t x x c d  − +   with 2 1t x t  , we have that  

                        ( )( ) ( )1 2 1 2 1 2( ) ( )g t g t K t t K t t −  − − = − − . 

Take any integer n > 0 such that  ,

1
x

n
 , then we have for any

1 2

1 1
, , ( , ) { }t t x x c d x

n n

 
 − +  − 
 

 with 2 1t x t  ,   

                        ( )( ) ( )1 2 1 2 1 2( ) ( )g t g t K t t K t t −  − − = − − . 

Therefore, nx E .   It follows that 
1

n

n

E E


=

= . 

Now, as  ( )m E   , by the continuity from below property of Lebesgue outer 

measure,  ( ) *( ) lim *( )n
n

m E m E m E
→

= =   .   

Starting with 1E , since 1*( )m E  , we can find an open set 1U  containing 1E  

such that 1 ( , )U c d  and  

                                   1 1

1
( ) *( )

2
m U m E  + .   
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By the definition of 
1*( )

gv E  we may choose 1U  such that  

                                
1 1

1
*( ) *( )

2g gv vU E   + . 

Since 1n nE E + , we may assume that 1n nU U + . 

Now, 1U  is a countable union of disjoint open intervals.  To each of these open 

intervals, we can further partition it into at most countable number of non-

overlapping intervals, each with length less than or equal to 1.  Now, we collect 

all these intervals with non-empty intersection with 1E .  These then form a 

countable covering of 1E .  Let  1

1k k
I



=
 denote this countable covering.   Note that 

each 1

1kI E  .  Thus, we have 1

1 1

1
( ) ( ) *( )

2
k

k

m I m U m E   + .  

Suppose the end points of 1

kI  is 1 1 and k ka b  with 1 1 < k ka b .  If  1 1 or k ka b  is equal to x, 

then  ( )1 1 1 1( ) ( )k k k kg b g a K b a−  − − .   If x is in the interior of 1

kI , then 

( )1 1 1 1( ) ( )k k k kg b g a K b a−  − − .  Since g is of bounded variation on I, the set of 

discontinuities of g is at most countable.  We may thus assume that g is 

continuous at the end points of 1

kI .  By Theorem 8, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1( , ) ( , ] [ , ) [ , ]g k k g k k g k k g k k k k k ka b a b a b a b g b g a K b a    = = = = −  − − . 

This means, ( ) ( ) ( )1 1

g k kI K m I  − . 

Let 1

1 k

k

V I= .  Then  

  ( ) ( )1 1

1g g k g k

kk

V I I  
 

= = 
 

  

          ( ) ( )1 1

1( ) ( ) ( )k k

k k

K m I K m I K m V  
 

 − = − = − 
 

 . --------------------- (4) 

We have also that  

                               1 1 1

1
( ) ( ) *( )

2
m V m U m E   + , --------------------------- (5) 

and 

                              
1 1

1
( ) *( )

2g gv vV E   + .   ---------------------------------- (6) 
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Now that 1 2E E .  Consider 2 1E V− .   We can now take an open set 2U  such that 

2 1 2E V U−   , 2 2 1 2

1
( ) *( )

2
m U m E V  − +  and 

2 2 1 2

1
( ) *( )

2g gv vU E V   − + . 

As before we can write 2U  as a countable union of non-overlapping intervals 

i

i

J   with length less than or equal to  
1

2
 and discard those intervals with 

empty intersection with  2 1E V− .   We may assume that each of these intervals 

does not contain any of the intervals in the decomposition for 1V .  Since any 

interval in 1V  has empty intersection with 2 1E V− , if one of these intervals, say kJ

,  has a non-empty intersection with an interval I in 1V , then kJ I−  is at most a  

union of two disjoint intervals, at least one of which has non- empty intersection 

with  2 1E V− .  Discard the interval with empty intersection with 2 1E V−  or 

proceed to select the other interval if it has nonempty intersection with 2 1E V− .  

In this way we may assume that each interval iJ  has non-empty intersection 

with 2 1E V−  and does not contain any interval in the decomposition for 1V .  Now 

let 
2 i

i

U J= . Then ( )2 2( ) ( )g U K m U  − .   Let  2 1x U V − .  Then kx J  for some 

k and there exists 2 2 1e E V −  with 2 ke J .  If 2x e= , then x  belongs to one of the 

non-overlapping intervals in 2 1U V− . If 2x e , then 2 2[ , ] or [ , ]x e e x  has empty 

intersection with any one of the intervals of the decomposition for 1V  and so 

2 2[ , ] or [ , ]x e e x  is contained in one of the non-overlapping intervals in 2 1U V− .  It 

follows that the non-overlapping intervals in 2 1U V−  has non-empty intersection 

with 2 1E V− .   Hence,  

                     ( ) ( )2 1 2 1( ) ( )g U V K m U V −  − − . 

Let 2 1 2V V U=   .  Then 

( ) ( ) ( ) ( )2 1 2 1 1 2 1( ) ( )g g g gV V U V V U V   =  − = + −  

          ( ) ( )1 2 1 1 2 2( ) * ( ) ( ) ( ) ( ) ( )K m V K m U V K m V U K m V    − + − − = −  = − ---- (7) 

2 1 2 1 2 1 2 1 2

1 1
( ) ( ) ( ) ( ) *( ) *( )

2 2
m V m V U m V m U m E m E V =   +  + + − +  

      2 1 2 1 22 2

1 1 1 1
*( ) *( ) *( )

2 2 2 2
m E V m E V m E  

 
  + + − + = + + 

 
.   ---------(8) 

Similarly, we have, 
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2 1 2 1 2 1 2 1 2

1 1
( ) ( ) ( ) ( ) *( ) *( )

2 2g g g g g gv v v v v vV V U V U E E V      =   +  + + − + . 

        2 1 2 1 22 2

1 1 1 1
*( ) *( ) *( )

2 2 2 2g g gv v vE V E V E     
 

  + + − + = + + 
 

. ---- (9) 

Note that 1 2V V . 

Assuming that we have defined n nV E  and a decomposition of nV  into non-

overlapping intervals such that each intervals has non-empty intersection with 

nE  and satisfying 

    
1

1
( ) *( )

2

n

n n k
k

m V m E 
=

 +  , --------------------------- (10) 

   
1

1
( ) *( )

2g g

n

v n v n k
k

V E  
=

 +   ------------------------- (11) 

 and 

             ( ) ( ) ( )g n nV K m V  − .  ---------------------- (12) 

Then we can choose an open set 1nU + , such that 1 1n n nE V U+ +−   and      

                   1 1 1

1
( ) *( )

2
n n n n

m U m E V + + +
 − + , ------------ (13) 

                  
1 1 1

1
( ) *( )

2g gv n v n n n
U E V  + + +

 − + .  --------- (14) 

We note that 1nU +  is a countable union of disjoint open intervals.  To each of 

these open intervals, we can further partition it into at most countable number of 

non-overlapping intervals, each with length less than 
1

1n +
.  Now, we collect all 

these intervals with non-empty intersection with 1n nE V+ −  and discard those with 

empty intersection with  1n nE V+ − .   Furthermore, as we deliberated above, we 

may assume that each of these intervals does not contain any intervals of the 

decomposition in nV .  Moreover,  

                                  ( )1 1( ) ( )g n n n nU V K m U V + +−  − − .   

Now let 1 1n n nV V U+ +=   so that 1n nV V +  and we can show similarly that  
1

1 1

1

1
( ) *( )

2

n

n n k
k

m V m E 
+

+ +

=

 +  , 
1

1 1

1

1
( ) *( )

2g g

n

v n v n k
k

V E  
+

+ +

=

 +   and 
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( )1 1( ) ( )g n nV K m V + + − . 

We restate the argument below. 

Let  1
1

n

k k
I


+

=
 denote this special countable covering for 1n nE V+ − .  We shall use the 

same symbol for the covering 1

1

n

n k

k

U I +

+ =  Note that each ( )1

1

n

k n nI E V+

+ −  .  

Thus, we have from (13), 1

1 1 1

1
( ) ( ) ( )

2

n

n k n n n
k

m U m I m E V +

+ + +
=  − + .  

Suppose the end points of 1n

kI +  is 1 1 and n n

k ka b+ +  with 1 1 < n n

k ka b+ + .  If  1 1 or n n

k ka b+ +  is 

equal to x, then  ( )1 1 1 1( ) ( )n n n n

k k k kg b g a K b a+ + + +−  − − .   If x is in the interior of 1n

kI + , 

then ( )1 1 1 1( ) ( )n n n n

k k k kg b g a K b a+ + + +−  − − .  Since g is of bounded variation on I, the 

set of discontinuities of g is at most countable.  We may thus assume that g is 

continuous at the end points of 1n

kI + .  By Theorem 8, 

                  ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1( , ) ( , ] [ , ) [ , ]n n n n n n n n

g k k g k k g k k g k ka b a b a b a b   + + + + + + + += = =  

                                        ( ) ( ) ( )1 1 1 1n n n n

k k k kg b g a K b a+ + + += −  − −     . 

This means, ( ) ( ) ( )1 1n n

g k kI K m I + + − .  Thus ( ) ( ) ( )1 1g n nU K m U + + − .  Similarly, 

we deduce that ( ) ( ) ( )1 1g n n n nU V K m U V + +−  − − . 

Thus, ( ) ( ) ( ) ( )1 1 1( ) ( )g n g n n n g n g n nV V U V V U V   + + +=  − = + −  

  ( ) ( )1 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n nK m V K m U V K m V U K m V   + + + − + − − = −  = − . 

Let 
1

n

n

V V


=

= . 

Then 
1

1
( ) lim ( ) lim *( ) lim *( )

2g g g g

n

v v n v n vkn n n
k

V V E E     
→ → →

=

=  + = +  and 

  
1

1
( ) lim ( ) lim *( ) lim *( )

2

n

n n kn n n
k

m V m V m E m E 
→ → →

=

=  + = + . 

Since g P N  = − , by the continuity from below property of positive measure, 

( ) ( ) ( ) ( )lim ( ) lim ( )g g n n
n n

V V K m V K m V   
→ →

=  − = − .            

                          ( ) ( ) ( )
g g gv v vV E V E   − = −   ---------------------------- (15) 
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Therefore, ( ) ( )
gg vV E V E  − = −   and so ( ) ( )

gg vV E V E  −  −  . It follows 

that             

                                             ( )g V E − −  − .  ----------------------------- (16) 

Similarly,   

                                        ( ) ( ) ( )m V E m V m E − = −  .       ----------------- (17) 

Now, ( )( ) ( ) ( ) ( )g g gE V V E K m V    = − −  − −  . 

If ( ) 0K −  , then ( )( ) ( ) ( ) ( ) ( )K m V K m E K m E K    −  −  − − − . 

If ( ) 0K −  , then  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )K m V K m E K m E K K m E K        −  − + = − + − = − − − . 

It follows that  

                  ( ) ( ) ( ) ( ) ( )g g gE V V E K m E K      = − −  − − − − . 

Letting 0 +→  , we get 

                         ( ) ( )g E Km E  .    

Suppose now E is any Borel subset of I and ( )g x K   for all x in E.  Let ( )nc  be 

a sequence such that infnc I  and ( )nd  be a sequence such that supnd I .  

Then ( , )n nc d is contained in the open interval I.  Let  ( , )n n nE E c d=  .  Then 

1n nE E +  and 
1

n

n

E E


=

= .  Note that each nE  is Borel.  By what we have just 

proved,  ( ) *( )g n nE Km E  .  Recall that g P N  = − .  Then by the continuity 

from below property of the positive Radon measures,  and P N  , 

( )lim ( ) ( ) lim ( ) lim ( ) ( ) ( ) ( )P n N n P n N n P N g
n n n

E E E E E E E      
→ → →

− = − = − = .  Therefore, 

                  ( ) lim ( ) lim *( ) ( )g g n n
n n

E E K m E Km E 
→ →

=  = . 

This proves the first part of the Theorem.   

For the case when E is a Borel subset of I such that ( )g x K   for all x in E, we 

start by considering the function −g.   So, we have ( ) ( )g x K−  −  for all x in E.  

We may then conclude that ( ) *( )g E Km E−  − .  But  ( ) ( )g gE E − = −  and so 

multiplying by −1 gives ( ) ( )g E Km E  . 
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De La Vallée Poussin Decomposition of Lebesgue Stieltjes measure.     

 

Now we state the de La Vallée Poussin theorem on the decomposition of the 

signed Lebesgue Stieltjes measure generated by a function of bounded variation 

on an open interval. 

Theorem 17. Let I be an open interval and ( )g BV I .  Let 

   :  is discontinuous at disI x I g x=  ,    

   :  is continuous at  and  is differentiable at  with ( )  I x I g x g x g x+
=  = +  and 

   :  is continuous at  and  is differentiable at  with ( )  I x I g x g x g x−
=  = − . 

Then for every Borel set disE I I −  , 

          ( ) ( ) ( )g g g
E

E g E I E I  + −
= +  +    and 

           ( ) ( ) ( ) ( )
gv g g g

E
E E g E I E I   + −

= = +  +  . 

Moreover, there exists a Borel set disN I I −  with ( )( ) ( ) ( ) 0
gv gm N N m N = = =  

such that for all ( )disx I I N −  , ( ) ( )gv x g x =  .  Note that  ( ) 0g E I −  . 

 

We shall need the following useful result on the additivity of total variation of 

two functions when one is absolutely continuous of bounded variation and the 

other a singular function of bounded variation. 

Theorem 18.  Suppose I is an open interval and :g I →  is an absolutely 

continuous function of bounded variation and :h I →  is a singular function of 

bounded variation on I.  Then g h g h  + = + . 

Proof. 

For b a with a, b in I, let [ , ]gVar a b  be the total variation of g on the interval

[ , ]a b .  Then 0( ) [ , ]g h g hx Var x x + +=  for 0x x  and 0( ) [ , ]g h g hx Var x x + += −  if 0x x . 

Therefore, for 0x x ,  

            0 0 0( ) [ , ] [ , ] [ , ] ( ) ( )g h g h g g g hx Var x x Var x x Var x x x x  + +=  + = + . 

For 0x x , 0 0 0( ) [ , ] [ , ] [ , ] ( ) ( )g h g h g h g hx Var x x Var x x Var x x x x  + +− =  + = − −  and so 
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                        ( ) ( ) ( )g h g hx x x  +  + . 

Similarly, for 0x x , 

( ) 0 0 0 0 0( ) [ , ] [ , ] [ , ] [ , ] [ , ] ( ) ( )h g h g g h g g h gg h g
x Var x x Var x x Var x x Var x x Var x x x x  + − + ++ −
=  + = + = +

and for 0x x ,
( )

( ) ( ) ( ) ( )h g h gg h g
x x x x   ++ −
=  + . 

Thus, for 0x x , ( ) ( ) ( )g h h gx x x  + −    and for 0x x , ( ) ( ) ( )h g h gx x x  +−  −  and 

that 0x x , ( ) ( ) ( )h g h gx x x  +−   and for 0x x , ( ) ( ) ( )g h h gv x v x x+ −  − . 

It follows that  

     ( ) ( ) ( )g h h gx x x  + −   for 0x x  and ( ) ( ) ( ) ( )g h h g gx x x x   + −  − =  for 0x x . 

Let ( ) ( ) ( )g h hf x v x v x+= − .  Then for any y > x, 

  ( )( ) ( ) ( ) ( ) ( ) ( ) [ , ] [ , ]g h g h h h g h hf y f x v y v x v y v x Var x y Var x y+ + +− = − − − = − . 

Then taking 0x x= , we see that 

            ( ) ( ) [ , ] [ , ] [ , ] ( ) ( )g h h g g gf y f x Var x y Var x y Var x y y v x+− = −  = − .  ---------- (1) 

Since g is absolutely continuous and of bounded variation, gv  is also absolutely 

continuous.  It follows from the inequality (1) that f is absolutely continuous.   

Now,  ( ) ( ) ( ) ( ) ( ) ( )g h hf x v x v x g h x h x+
   = − = + − , almost everywhere on I, 

             ( )g x= , almost everywhere. 

Since f and gv are absolutely continuous, gf v−  is absolutely continuous and     

               ( ) ( ) ( ) ( ) ( ) ( ) 0g gf v x f x x g x g x   − = − = − =  almost everywhere on I. 

It then follows from Theorem 7 of Absolutely Continuous Function on Arbitrary 

Domain and Function of Bounded Variation, that 0gf − = , since 

0 0( ) ( ) 0gf x x= = . Hence, g h g h  + = + . 

 

Before we embark on the proof of Theorem 17, we state and prove the next 

result, which facilitates the proof of Theorem 17.  
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Theorem 19.  Suppose I is an open interval and :g I → is a function of 

bounded variation.  Then g can be decomposed into a sum of three functions, 

 + ab c sg g g g= + , where abg  is absolutely continuous , ( ) ( )abg x g x = almost 

everywhere on I, cg  is a continuous singular function, i.e., ( ) 0cg x =  almost 

everywhere and sg is the difference of two Saltus functions.  For any Borel set E 

in I, 

 (a)            ( )( ) ( ) ( )
sg

y E

E g y g y + −



= − , 

 (b)           ( ) ( ) ( )
sg

y E

E g y g y + −



= − , 

(c)            ( )( ) ( ) ( ) ( ) ( )
gs

v

y E

E g y g y g y g y + −



= − + −  and 

(d)            ( ) ( ) ( )
g g gs s

dis v dis vE I E I E   =  = . 

Furthermore,   

      ( ) ( ) ( ) ( ) ( ) ( ) 0
s g ab c g gs ab c

g dis v dis g dis g dis v dis v disI I I I I I I I     − = − = = = = = . 

If g is continuous at every point of the Borel set E, ( ) ( )
gg vE E =  and  

                         ( ) ( )
g g gc s c

v vE E 
+

= .    

For any Borel set ,E I  ( ) ( ) ( ) ( )
g g g gab c s

E E E E      = + + . 

Proof. 

We define the saltus function for unbounded increasing function :h I → in 

general as follows. Pick a reference point 0x .  We assume that h is continuous at 

0x .  Then define 

                       

( )

( )
0

0

0

,

0

,

0

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

0,

y I x y x

s

y I x y x

h y h y h x h x x x

h x h y h y h x h x x x

x x

+ − −

  

+ − +

  

 − + − 



= − − + − 

 =




 .  ----------- (1) 

Then ( ) 0sh x =  and ( ) ( ) ( )sh h x h x − =  almost everywhere on I. 

It can be shown that sh h−  is an increasing continuous function on I.   A proof of 

this is given in Theorem 13 of Arc Length, Functions of Bounded Variation and 

Total Variation, when the domain is a closed and bounded interval.  The proof 
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there is also applicable when the domain is any interval.  Now we assume that h 

is an increasing bounded function and so sh h = − is also an increasing 

continuous bounded function. The function    can be decomposed into a sum of 

an absolutely continuous function, abh   and a continuous singular function, ch  

such that ( ) ( )abh x h x = almost everywhere on I, ( ) ( ) 0c sh x h x = =  almost 

everywhere on I, that is, s ab ch h h h− = = +  and ab c sh h h h= + + .  Note that 

( ) ( )x h x = almost everywhere. The function abh  may be defined by 

                   0

0

0

0

( ) ,  ,
( )

( ) ,  

x

x

ab x

x

h t dt x x
h x

h t dt x x

  


= 
 − 





. 

We note that since h is increasing and bounded, h is differentiable almost 

everywhere on I and h  is finite for almost all x in I.  It follows then by 

Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation that h  is Lebesgue integrable.   It follows, as 

indicated  in the proof of Theorem 8 in Absolutely Continuous Function on 

Arbitrary Domain and Function of Bounded Variation by applying Proposition 

9 of Absolutely Continuous Function on  Arbitrary Domain and Function of 

Bounded Variation, that abh  is absolutely continuous on I.  Note that 

( )c s abh h h h= − −  and since ( )and s abh h h− are continuous, ch  is continuous and 

( ) 0ch x = almost everywhere on I.  

Now g is of bounded variation and so g P N= −  is a difference of two bounded 

increasing functions. So, taking the decomposition of P and N we get 

         ( ) ( ) ( ) ( )ab c s ab c s ab ab c c s sg P P P N N N P N P N P N= + + − + + = − + − + − . 

Let ab ab abg P N= − , c c cg P N= −  and s s sg P N= − .   Then abg  is absolutely continuous 

as it is the sum of two absolutely continuous functions. cg  is the sum of two 

continuous singular functions and so it is a continuous singular function. The 

function sg  is the difference of two saltus type functions. We call it a jump 

function.  Note that s ab cg g g g− = +  is a continuous function. 

By definition of the Saltus function and as g is continuous at x if, and only if,  

g  is continuous, we have, using definition (1), that 
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( )

( )
0

0

0

,

0

,

0

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

0,

y I x y x

s

y I x y x

g y g y g x g x x x

g x g y g y g x g x x x

x x

+ − −

  

+ − +

  

 − + − 



= − − + − 

 =




 .  --------------- (2) 

Thus, using (2), we have, for  0x a b  ,  

( ) ( )
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s

x y b x y a

g b g a g y g y g b g b g y g y g a g a+ − − + − −

   

 
− = − + − − − + − 

 
   

                  ( )( ) ( ) ( ) ( ) ( ( ) ( ))
a y b

g y g y g b g b g a g a+ − − −

 

= − + − − −  

                  ( )( ) ( ) ( ) ( ) ( ( ) ( ))
a y b

g y g y g b g b g a g a+ − − +

 

= − + − − −  

For 0a b x  ,           

( ) ( ) ( )
0 0, ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s

y I b y x y I a y x

g b g a g y g y g b g b g y g y g a g a+ − + + − +

     

 
− = − − + − + − − − 

 
 

                   ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )
y I a y b

g y g y g b g b g a g a+ − + +

  

= − + − − −  

                   ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )
y I a y b

g y g y g b g b g a g a+ − − +

  

= − + − − − . 

For 0a x b  ,    

( ) ( ) ( )
0 0,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s

x y b y I a y x

g b g a g y g y g b g b g y g y g a g a+ − − + − +

    

− = − + − + − − − 

    

                    ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
a y b

g y g y g b g b g a g a+ − − +

 

= − + − − − .   

Hence, for a b  with ,a b I , we have 

           ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s

a y b

g b g a g y g y g b g b g a g a+ − − +

 

− = − + − − − .  ---------- (3) 

It follows that  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s

a y b

g b g a g y g y g y g y g b g b g a g a+ − − +

 

−  − + − + − + − . 

Thus, if we take any partition of [a, b], 0 1 2 nx a x x x b=     =  , i =1, …, n−1, 

we see that 

( ) ( )1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s i s i

i n a y b

g x g x g y g y g y g y g b g b g a g a− + − − +

   

−  − + − + − + −  . 
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Therefore, 

  ( ) ( )[ , ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sg

a y b

Var a b g y g y g y g y g b g b g a g a+ − − +

 

 − + − + − + −  . 

If there is only a finite number of discontinuities in [a, b], then 

( ) ( )[ , ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sg

a y b

Var a b g y g y g y g y g b g b g a g a+ − − +

 

 − + − + − + −  and so 

   ( ) ( )[ , ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sg

a y b

Var a b g y g y g y g y g b g b g a g a+ − − +

 

= − + − + − + − . 

On the other hand, for any set K of finite number of discontinuities in [a, b],  

       ( ) ( )[ , ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sg

y K

Var a b g y g y g y g y g b g b g a g a+ − − +



 − + − + − + − . 

Therefore, since the number of discontinuities of g is at most countably infinite,  

      ( ) ( )[ , ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sg

a y b

Var a b g y g y g y g y g b g b g a g a+ − − +

 

 − + − + − + − . 

Thus,  

 ( ) ( )[ , ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
sg

a y b

Var a b g y g y g y g y g b g b g a g a+ − − +

 

= − + − + − + − ---- (4) 

Now take any disx I  in the interior of [a, b].   Then, by taking b such that g is 

continuous at b and b x ,  and a such that g is continuous at a with a x , we 

get 

              ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
s sg gv x v x g x g x g x g x+ −

+ −
− = − + −  . ------------------ (5) 

Let ( ) ( ) ( )sG x g x g x= − .  Then G(x) is continuous on I.  Therefore, 

               ( )( ) ( ) ( ) ( ) ( ) ( )s sG x g x g x G x g x g x+ + +
= − = = − . 

By identity (2), for 0x x  ,  

                         ( ) ( )
0,

( ) ( ) ( ) ( ) ( ) ( )s s

y I x y x

g x g x g x g x g y g y+ + −+
  

= − + = −  

and for 0x x , 

                         ( ) ( ) ( ) ( ) ( )s sg x g x g x g x++
= − +    

                       ( )
0,

( ) ( ) ( ) ( ) ( ) ( ) ( )s

y I x y x

g x g x g x g y g y g x g x+ + − +

  

= − + − − + −       



31 

 

                       ( )
0

( ) ( )
x y x

g y g y+ −

 

= − − .    

Note that  ( ) 0 0 0 0( ) ( ) ( ) ( ) 0s sg x g x g x g x++
= − + = , since g is continuous at 0x .  

Similarly, we have ( )( ) ( ) ( ) ( ) ( ) ( )s sG x g x g x G x g x g x− − −
= − = = −  so that  

                               ( ) ( ) ( ) ( ) ( )s sg x g x g x g x−−
= − +  

For 0x x  ,   ( ) ( ) ( ) ( ) ( )s sg x g x g x g x−−
= − +  

                                 ( )
0,

( ) ( ) ( ) ( ) ( ) ( )
y I x y x

g x g x g y g y g x g x− + − −

  

= − + − + −  

                                ( )
0,

( ) ( )
y I x y x

g y g y+ −

  

= −    

and for 0x x , ( ) ( ) ( ) ( ) ( )s sg x g x g x g x−−
= − +  

                         ( )
0,

( ) ( ) ( ) ( ) ( ) ( )
y I x y x

g x g x g y g y g x g x− + − +

  

= − − − + −  

                        ( )
0,

( ) ( )
y I x y x

g y g y+ −

  

= − − .    

We have also that ( ) 0 0 0 0( ) ( ) ( ) ( ) 0s sg x g x g x g x−−
= − + = . 

Thus, we have, 

                  ( )

( )

( )

0

0

0

,

0

0

,

( ) ( ) ,  ,

( ) 0,   ,

( ) ( ) ,  

y I x y x

s

y I x y x

g y g y x x

g x x x

g y g y x x

+ −

  

+

+ −

  

 − 



= =

− − 






, ------------------------ (6) 

and            

                   ( )

( )

( )

0

0

0

,

0

0

,

( ) ( ) ,  ,

( ) 0,   ,

( ) ( ) ,  

y I x y x

s

y I x y x

g y g y x x

g x x x

g y g y x x

+ −

  

−

+ −

  

 − 



= =

− − 






.   -------------------- (7) 

It follows from (6) and (7) that for any x in I,  

                                ( ) ( ) ( ) ( )s sg x g x g x g x+ − + −− = − . 

Therefore,  

                    ( ){ } ( ) ( ) ( ) ( )
sg s sx g x g x g x g x + − + −= − = − .       ----------------- (8) 
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From identity (5), we get for disx I  , 

               ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
g s ss

g gx x x g x g x g x g x   + −
+ −

= − = − + −  ------- (9) 

Obviously, for disx I I − ,  ( ) ( ) ( )( ) ( ) 0
g s ss

g gx x x  
+ −

= − =  since 
sgv is continuous 

at x.  

Note that we use the same anchor point 0x  for the definition of total variation 

function as well as for the Saltus function.  Recall that 

           0( ) ( ) ( ) ( )g x P x N x g x = + −  and  0 1 2( ) ( ) ( ) ( ) ( ) ( )g x P x N x g x x x = − = + − . 

Now assume 0x x .  Let y x  and .y I    

Recall that 0x , a point of continuity of g is the anchor point for the total 

variation function of g.     

If [ , ]a b  is an interval with end points in disI I− , then 

        ( )  ( )
( , )

[ , ]
g gs s

dis

v dis v

x a b I

a b I x 
 

 =  , since 
gs

v is finite and disI  is countable, 

                                
( , )

( ) ( ) ( ) ( )
disx a b I

g x g x g x g x+ −

 

= − + −  by identity (9). 

But  ( ) ( ) ( )[ , ] ( ) ( ) ( ) ( )
g s s s ss

v g g g ga b b a b a    
+ −

= − = −  

                      [ , ]
sgVar a b=  

                         
( , )

( ) ( ) ( ) ( )
disx a b I

g x g x g x g x+ −

 

= − + − , by identity (4). 

Hence,  ( )[ , ] 0
gs

v disa b I − = .  It follows that ( ) 0
gs

v disI I − = .  Therefore, 

( ) 0
sg disI I − =  and so ( ) 0

sg disI I − = . 

Thus, for any Borel set E in I, we have 

            ( ) ( ) ( ) ( )
s s s sg g dis g dis g disE E I E I E I   = − +  =  , since ( ) 0

sg disE I − = , 

                      ( ) ( )( ) ( ) ( ) ( )
disx E I x E

g x g x g x g x+ − + −

  

= − = −  , by identity (8). 

This proves part (a). 

As disI  is countable and 
sg  is finite, we have that 

             ( ) ( ) ( ) ( )
s s s sg g dis g dis g disE E I E I E I   =  + − =   
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                      ( ) ( ) ( ) ( )
disx E I x E

g x g x g x g x+ − + −

  

= − = −  .    -------------------------  (*) 

We may deduce this as follows: 

Take any disx I . Pick any a, b in I such that g is continuous at a and b and 

.a x b    Then 

              ( )
( , ) ( , )

( ) ( ) ([ , ]) ([ , ]) ( ) ( )
s sg g

y a b y a b

g x g x a b a b g x g x + − + −

 

− =   −  . 

Letting a x  and b x , we get   

                 ( ) ( ) ({ }) ({ }) ( ) ( )
s sg gg x g x x x g x g x + − + −− =   −  

and so ({ }) ( ) ( )
sg x g x g x + −= − .   Thus, (*) follows since disI  is countable and g is 

of bounded variation so that ( ) ( )
disy I

g y g y+ −



−  . 

This proves part (b).   

Similarly, for any Borel set E in I, 

           ( ) ( ) ( ) ( ) ({ })
g g g g gs s s s s

dis

v v dis v dis v dis v

x E I

E E I E I E I x    
 

= − +  =  =   

                      ( ) ( ) ( ) ( )
disx E I

g x g x g x g x+ −

 

= − + − , by identity (9), 

                     ( ) ( ) ( ) ( )
x E

g x g x g x g x+ −



= − + −   

This proves part (c).   

We shall show next that for dist I  ,   ( )  ( )
g g gc s s

v vt t 
+

= . 

Suppose x is an isolated point of disI .   Then, there exists a, b in disI I−  such that 

a < b and [ , ] { }disa b I x = .  Let   
1

min ,
2

x a b x  − − .  Let c sh g g= + . 

     [ , ] [ , ] [ , ] [ , ]h h h hVar a b Var a x Var x b Var x x     = + − + + − + − +  

                  [ , ] [ , ]h hVar a a Var b b + + + −  

           ( ) ( )( )[ , ] [ , ] ( ) ( )h hVar a x Var x b h x h x h x h x      + − + + − + + − + − −  

                     ( ) ( )( ) ( )h a h a h b h b + + − + − − . 
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            ( ) ( )( )[ , ] [ , ] ( ) ( )
c cg gVar a x Var x b h x h x h x h x     = + − + + − + + − + − −  

                     ( ) ( )( ) ( )c c c cg a g a g b g b + + − + − − . 

Therefore, letting 0 +→ , we get, 

( ) ( )( ) ( ) ( )[ , ] [ , ] [ , ] ( ) ( ) ( ) ( ) ( ) ( )
c ch g g c c c cVar a b Var a x Var x b h x h x h x h x g a g a g b g b+ − + −

 + + − + − + − + −

             ( ) ( ) ( ) ( )( ) ( )( )[ , ] ( ) ( )
cg s s s sVar a b g x g x g x g x

+ −
= + − + −  

Therefore, by the continuity from above property of measure, 

          ( )  ( ) ( ) ( ) ( ) ( )( ) ( )( )  ( )( ) ( )
g g g gc s c s

v v s s s s vx x g x g x g x g x x  
+ + −

 + − + − = . 

Hence,  ( )  ( )
g g gc s s

v vx x 
+

=  as  ( )  ( )  ( )  ( )
g g g g gc s c s s

v v v vx x x x   
+

 + = . 

Let disx I .  Suppose x is not an isolated point of disI  but a limit point of disI . 

Since 
cgv  is continuous at x, given any 0  , there exists a 0   such that 

t x −   and t I  implies that ( ) ( )
c cg gt x  −  .  Thus, for all 0 x t  −   and  

t I , [ , ] ( ) ( )
c c cg g gVar t x x t  = −   and for all 0 t x  −  , 

[ , ] ( ) ( )
c c cg g gVar x t t x  = −   

Take y I  such that y x  and y x −  . 

Take a partition of [ , ]y x  by non-overlapping intervals  iI  where [ , ]i i iI a b=  

Then, for each i,  

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i s i s i c i c i s i s i c i c ih b h a g b g a g b g a g b g a g b g a− = − + −  − − −  

Hence, 

      ( ) ( ) ( ) ( ) ( ) ( )i i s i s i c i c i

i i i

h b h a g b g a g b g a−  − − −   . 

But ( ) ( ) [ , ]
cc i c i g

i

g b g a Var y x −   . It follows that 

                                       ( ) ( ) ( ) ( )i i s i s i

i i

h b h a g b g a −  − −  . 

Therefore,  [ , ] [ , ]
sh gVar y x Var y x  −   This means 

                ( ) ( ) ( ) ( )
s sh h g gx y x y    −  − −   

Letting y x  , we get  
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                             ( ) ( )( ) ( ) ( ) ( )
s sh h g gx x x x    

− −
−  − − .  ------------------ (10) 

Now we take y I  such that y x  and y x −  .   

As before, take a partition of [ , ]x y  by non-overlapping intervals  iI  where 

[ , ]i i iI a b= .   We have as above that 

                        ( ) ( ) ( ) ( )i i s i s i

i i

h b h a g b g a −  − −  . 

It follows similarly that ( ) ( ) ( ) ( )
s sh h g gy x y x    −  − − .  Letting y x  , we get 

                          ( ) ( )( ) ( ) ( ) ( )
s sh h g gx x x x    

+ +
−  − − .  ------------------ (11) 

Combining (10) and (11), we obtain 

                           ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 2
s sh h g gx x x x    

+ − + −
−  − − . 

That is to say,  ( ) ( ) ( ) ( ) ( )  ( )( ) ( ) ( ) ( ) 2 2
h s s gs

h h g gx x x x x x        
+ − + −

= −  − − = − .  

Since  is arbitrary, it follows that  ( )  ( )
h gs

x x    so that  ( )  ( )
h gs

x x  = .    

This means,  ( )  ( )  ( )
g g h gc s s

t t t    
+

= =  for all dist I .  

Hence,             

( )  ( )  ( )
g g g g gc s c s s

dis dis

dis

x E I x E I

E I x x    
+ +

   

 = =   

                     ( ) ( )( )( ) ( )
disx E I

g x g x g x g x+ −

 

= − + − . 

Thus, 

 ( ) ( ) ( )
g g g gc s s

dis dis disE I E I E I    
+

 =  =         -------------------------------- (12) 

                       ( ) ( )( ) ( ) ( )( )( ) ( ) ( ) ( )
disx E I x E

g x g x g x g x g x g x g x g x+ − + −

  

= − + − = − + −     

                       ( )
gs

E= . 

This proves (d).   

Now, since disI  is countable and abg  is continuous on disI ,  by Theorem 6,

( )( ) * ( ) 0
g abab

v dis g disI m I = = .  It follows by Theorem 8 that ( ) ( ) 0
ab abg dis g disI I = = .    

Similarly, as ( )( ) * ( ) 0
g cc

v dis g disI m I = = , ( ) 0
cg disI =  and so ( ) 0

cg disI = . 
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For any Borel set E in disI I− , take any Borel subset F E ,  since 

( )( ) 0
s sg g disF I I  − = , ( ) 0

sg F = . Similarly, ( ) 0
gs

v E = . 

Therefore, for F E  and disE I I − , 

          ( ) ( ) ( ) ( ) ( ) ( )
ab c s ab cg g g g g gF F F F F F     = + + = +   

                    ( )( ) ( )
ab c ab cg g g gF F   += + = . 

This implies that  ( ) ( )
ab cg g gE E  +=  for disE I I − .  

In particular, ( ) ( )
ab cg g gE E  +=  for disE I I −  . 

Thus, ( ) ( ) ( ) ( )
ab c g g g gab c ab c

g g gE E E E     
++ += = =  by Theorem 8 and Theorem 18, 

                     ( ) ( )
g gab c

E E  = + . 

Now,  
( )

( ) ( ) ( ) ( )
g g g g g g g g g gab c s ab c s ab c s

vE E E E      
+ + + + ++= = =  ,  by Theorem 18, 

                 ( ) ( ) ( ) ( ) ( ) ( ) ( )
g g g g g g g gab c s ab c s ab c

v v v vE E E E E E E        
+

= +  + + = + , 

since  disE I I − . 

But, for disE I I − , 

         ( ) ( ) ( ) ( ) ( ) ( )
g g g g gab c ab c

gE E E E E E         + =   +  

and so ( ) ( ) ( ) ( ) ( )
g g g g gab c ab c

gE E E E E       
+

= = + = .   

 But ( ) ( ) ( )
g g g gab c s

vE E E   
+

= +  and so 

                         ( ) ( )
g g gc s c

v vE E 
+

= , for disE I I − .   -------------------- (13) 

For E I  , 

( ) ( ) ( )
g g g gab c s

E E E    
+

= +  , by Theorem 18, 

          ( ) ( ) ( )
g g g g gab c s c s

dis disE E I E I    
+ +

= + − +   

          ( ) ( ) ( )
g g g gab c c s

dis disE E I E I    
+

= + − +  , by (13), 

          ( ) ( ) ( )
g g g gab c c s

disE E E I    
+

= + +  , since ( ) 0
gc

disE I  =  

           ( ) ( ) ( )
g g gab c s

E E E    = + + , as    
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                                   ( ) ( ) ( )
g g g gc s s

dis disE I E I E    
+

 =  =  by (12). 

This concludes the proof of Theorem 19. 

 

Proof of Theorem 17. 

By Theorem 14, ,  and  disI I I+ −
are Borel.  Therefore, disI I−  is Borel and so for 

any Borel set disE I I − ,  and E I E I+ −  are Borel. 

( )( )( ) ( ( ) ( )g g g gE E I I I E I E I   + − + −=  −  +  +   

         ( )( )( ( ) ( )g dis g gE I I I I E I E I  + − + −=  −   +  +  , 

 since E is contained in disI I− . 

Now, 

( )( ) ( )( )( ) ( )( )( )(g dis P dis N disE I I I I E I I I I E I I I I  + − + − + − −   =  −   −  −  

         ( )( )( )( ) ( )( )( )( )disc discm P E I D I I m N E I D I I+ − + −=  −   −  −   , ---- (1) 

                                           by Theorem 6, since P and N are continuous on E.     

Let  

Eh,k  = {x  I: there is a derived number of g  at x greater than k and a derived 

number of g at x, whose absolute value is less than h.} and 

S = {x  I: there is a positive derived number and a negative derived number of 

g at x.}. 

Let  , : 0 ,  and  are rational numbers.h kH E h k h k=   .  

Then, H = {x I:  there is a derived number of f   greater than the absolute 

value of a derived number of f at x.}. 

Let K H S=  .  We have already shown in the proof of Theorem 15 of 

Functions of Bounded Variation and de La Vallée Poussin's Theorem, that  

                  ( ) ( )( ) ( ) ( ) 0gm S m g S m S= = = , 

                 ( ) ( )( ) ( ) ( ) 0gm H m g H m H= = =  

 and that for x I K − , '( ) ( )gg x v x= .   
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Let  * :  is differentiable at  finitely or infinitelyx I g x =   and 

 :  is differentiable finitely at x I g x =  .  Then   and *   are Borel and 

              ( ) ( ) ( ) ( )* *disI I I I I I K K+ −−    −  −  −  .   ---------- (2) 

By Theorem 19,  

( )( )( ) ( )( )( ) ( )( )( )
gg g dis v disE I I I E I I I I E I I I I  + − + − + − −  =  −   =  −  

                ( )( ) ( )*
g gv vE I E   − +   

                   ( )( )( ) ( )( )* * *g gm E I m E =  − +  . 

Since *I K−   , *I K−   and so ( )( )( ) ( )( )* * * 0g gm E I m K  −  = .  It 

follows that ( )( ) ( )( )( )* * * 0
gv gE I m E I  − =  − = .  Hence  

           ( )( )( ) ( ) ( )
gg v gE I I I E E  + − −    =  . 

But ( )( )E E I I I+ −  −  so that ( ) ( )( )( )g gE E I I I  + −   −  .  

Therefore, 

           ( )( )( ) ( )g gE I I I E + − −  =  . 

As  ( )( )* 0gm K = , ( ) ( )( )* * 0
gv gE K m v E K  =  = . 

Therefore, ( ) ( )( ) ( )( )( )* *
g gv v gE E K m E K   =  − =  − . 

But by Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation, 

                ( )( ) ( )( )( )* *g g
E

g m E m E K 


 =  =  − .    

Hence, ( )( )( ) ( )( )( ) ( ) ( )
g gg v g vE I I I E I I I E E   + − + − −  =  −  =  =   

           
E

g


=  . 

Since ( ) 0m I − = ,  
E E

g g


 =  .   Thus, 

          ( )( )( ) ( )( )( )
gg v

E
E I I I E I I I g + − + −

 −  =  −  =  .   --------------- (3) 

Now observe that  ( )( )( )* 0gm v E K = implies that      
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               ( ) ( ) ( )* * * 0
gP N vE K E K E K   +  =  =  

so that ( ) ( )* * 0P NE K E K  =  = .   Since g is continuous on E, P and N are 

continuous on E.  Therefore,  

          ( )( )( ) ( ) ( )( )( ) ( )* * 0 and * * 0P Nm P E K E K m N E K E K  =  =  =  = .    

Similarly, ( )( )( )* * 0gm E I  − = implies that  

              ( )( )( ) ( )( )( )* * * * 0m P E I m N E I − =  − = . 

It follows from (2) that ( )( )( )( ) ( )( )discm P E I D I I m P E+ − −     . Since 

( )( )discE E I D I I+ −  −   , ( )( ) ( )( )( )( )discm P E m P E I D I I+ −   −   . 

Therefore, ( )( )( )( ) ( )( )discm P E I D I I m P E+ − −   =  .   We deduce similarly 

that ( )( )( )( ) ( )( )discm N E I D I I m N E+ − −   =  . 

Hence, 

( )( )( )( ) ( )( )( )( )disc discm P E I D I I m N E I D I I+ − + − −   −  −    

= ( )( ) ( )( )* *m P E m N E −   

( )( ) ( )( )* ( ) * (m P E K m N E K=  − −  −  

( ) ( )E K E K
P N

 −  −

 = −   

E E
P N

 

 = −  , 

 by Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation, 

( ) ( )E E
P N

+ −   

 = −  , 

 where  :  is differentiable finitely at  and ( ) 0x I g x g x+
 =     and  

 :  is differentiable finitely at  and ( ) 0x I g x g x−
 =   , 

  by the proof of Theorem 2 in A de La Vallée Poussin’s Decomposition, 

( )
( )

( )E E E
g g g

+ −   
  = − − =   . 

Hence, ( )( )(g disc
E

E I D I I g + −
 −   =  . 
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Thus,   

                     ( ) ( ) ( )g g g
E

E g E I E I  + −
= +  +  .   --------------------- (4) 

For any Borel set B in E I+ , by Theorem 16,  ( ) ( ) 0g B Lm B   , by taking any 

positive L > 0.  Therefore,  ( ) ( )g gE I E I + + =  .  Similarly, for any Borel set 

B in E I− , by Theorem 16,  ( ) ( ) 0g B Lm B  −   and so 

( ) ( )g gE I E I − − = −  .   

Since g  is a positive Borel measure, 

          ( )( )( ) ( ( ) ( )g g g gE E I I I E I E I   + − + −=  −  +  +   

                       ( )( )( ( ) ( )g g gE I I I E I E I  + − + −=  −  +  −   

                       ( ) ( )g g
E

g E I E I + −
= +  −  , ------------ (5) 

 by (3). 

Since g is continuous on E, it follows from Theorem 19 that 

            ( ) ( ) ( ) ( )
gv g g g

E
E E g E I E I   + −

= = +  −   

                      ( ) ( )
g gv v

E
g E I E I + −
= +  +  .   --------------------------- (6) 

Note that  

           ( ) ( ) ( ) 0g P NE I E I E I  − − − =  −       ------------------------- (7) 

and     ( ) ( ) ( ) 0g P NE I E I E I  + + + =  −   . -------------------------- (8) 

Hence, ( ) ( )P NE I E I − −    and ( ) ( )P NE I E I + +   . 

0( )( ) ( ) ( ) ( ) ( )
g gg g v v g x P NE I E I E I E I E I    + + + + + + + =  =  =  =   

                 ( ) ( )P NE I E I + +=  +  .         ----------------------------- (9) 

From (8) and (9),   

                                      ( ) 0N E I + = . ---------------------------------- (10) 

Similarly, since ( ) ( ) ( ) ( )g g N PE I E I E I E I   − − − − = −  =  −  and 

( ) ( ) ( )
gv P NE I E I E I  − − − =  +  , we get 

                                      ( ) 0P E I − = . -------------------------- (11) 
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Thus,         

              ( ) ( )g PE I E I + + =    and ( ) ( )g NE I E I − − = −  . ---- (12) 

It follows from (4) and (12) that 

              ( ) ( ) ( )g P N
E

E g E I E I  + −
= +  −   

                      ( ) ( )( ) ( )
E

g m P E I m N E I+ −
= +  −   

and from (5) and (12) that, 

              ( ) ( ) ( )g P N
E

E g E I E I  + −
= +  +   

                        ( ) ( )( ) ( )
E

g m P E I m N E I+ −
= +  +  . 

Let  K H S=  .  Then ( ) 0m K = .  Let V be a Borel set such that K V  and 

( ) ( ) 0m V m K= = .   Now let ( )B V I I+ −= −  .  Note that if ( )  or ( )g x g x = + = − , 

then ( ) ( )g x g x  = =   and so I I I K+ −  − .  Let 

( )( )B K V I K I I+ −=   −   .  As ( ) 0m K =  and ( )( ) 0m V I K I I+ − −   = , 

( )( )( ) ( )( )( ) ( ) 0m B m K V I K I I m K m V I K I I+ − + −=   −   = +  −   = . 

Note that ( ) ( ) ( )( )( )( ) ( )m g B m g K m g V I K I I+ − +  −   .  Now, ( )( ) 0m g K =  

and g is a Lusin function on ( )I K I I+ −−    so that  

( )( )( ) 0m g V I K I I+ − −   =  because ( )( ) 0m V I K I I+ − −   = .  It follows 

that ( )( ) 0m g B = .  Similarly, as ( )( ) 0gm K =  and by Theorem 10 of Function of 

Bounded Variation on Arbitrary Subset and Johnson’s Indicatrix, 

( )( )( ) 0gm V I K I I + − −   = .  Therefore, ( )( ) 0gm B = . Now, B is Borel and  

( ) ( ( )) ( ( )) 0gm B m g B m B= = =  and as K B , I B I K−  − , and so by Theorem 18 

of Functions of Bounded Variation and de La Vallée Poussin's Theorem, 

( )( ) ( )gg x v x
 = for all x in I B− .  Now let  disN B I= − . Then N  is Borel, g is 

continuous on N and so ( )( ) ( ) ( ) 0
gg v gN N m N  = = = . Therefore,  ( ) 0g N = .  

Obviously, ( )( ) ( ) 0m N m g N= = .   Thus, for all disx N I  , ( ) ( )g x g x  = , finitely 

or infinitely. 

This completes the proof of Theorem 17. 
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As a consequence of Theorem 17 we have: 

Proposition 20. 

The continuous image of a Borel set is Lebesgue measurable.  If E is a Borel set 

in the open interval I and :g I →  is a function of bounded variation on I, then  

           ( )( ) ( ) ( )g PE I E I m P E I + + + =  =  ,  

           ( )( ) ( ) ( )g NE I E I m N E I − − − = −  = −  ,  

           ( )( ) ( ) 0P E I m P E I − − =  =  and 

            ( )( ) ( ) 0N E I m N E I + + =  = ,                  

where P and N are respectively the positive and negative variation functions of 

g, which are increasing on I. 

Therefore, if disE I I −  ,  

           ( ) ( )( ) ( ) ( ) ( )g
E

E g x dx m P E I m N E I + −
= +  −   

and ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
gg v g

E
E E m E g x dx m P E I m N E I   + −

= = = +  +  . 

There exists a Borel set disN I I −  with ( ) ( ) 0
gg N N = =  and

( )( ) ( ) ( ) 0
gv gm N N m N = = =  such that for all disx I N I −  , ( ) ( )gv x g x =  .   

Proof. 

( )( ) ( ) ( )g PE I E I m P E I + + + =  =   follows from (12) in the proof of 

Theorem 17 and the fact that P is continuous on I+  .   We deduce in like 

manners that ( )( ) ( ) ( )g NE I E I m N E I − − − = −  = −  .  Since P and N are 

continuous on  and I I+ −  respectively , by (10) and (11) in the proof of Theorem 

17, ( )( ) ( ) 0Pm P E I E I− − =  =  and ( )( ) ( ) 0Nm N E I E I+ + =  = . The 

remaining assertions are given by Theorem 17.   

 

The following is an application of Theorem 17 to absolutely continuous 

function of bounded variation. 

Proposition 21. 

Let I be an open interval, ( )g BV I  and suppose g is absolutely continuous.  

Then for any Borel set E in I,  
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                       ( )( ) ( )( )( )g
E

E m P E m N E g = − =  ,   

and               ( ) ( )( ) ( )( )( ) ( ) ( )
gg v g

E
m E E E m P E m N E g   = = = + =  .  

There exists a Borel set N I  with ( ) 0g N =  and

( )( ) ( ) ( ( )) ( ) 0
gv gm N N m g N m N = = = =  such that for all x I N − , ( ) ( )gv x g x =  .   

Proof,   

For any Borel set E in I, ( ) ( ) ( )g P NE E E  = − , where P and N are the positive 

and negative variation functions of g as defined in Definition 7.   Since g is 

absolutely continuous, by Theorem 15, the total variation function of g, g  , is 

also absolutely continuous on I.  It follows that P and N are absolutely 

continuous on I.   Therefore, by Theorem 6,  

                    ( )( ) ( )( )( ) ( ) ( )g P NE E E m P E m N E  = − = − . 

By Theorem 17, ( ) ( ) ( )g g g
E

E g E I E I  + −
= +  +  .                              

By Theorem 18 of Functions of Bounded Variation and de La Vallée Poussin’s 

Theorem, ( ) ( ) 0m E I m E I− + =  = .  Since P and N are Lusin functions, it 

follows that ( )( ) ( )( ) ( )( ) ( )( ) 0m P E I m N E I m P E I m N E I+ + − − =  =  =  = . 

Hence, ( )( ) ( )( )( ) 0g E I m P E I m N E I + + + =  −  =  and 

           ( )( ) ( )( )( ) 0g E I m P E I m N E I − − − =  −  = . 

     . 

Therefore, ( )( ) ( )( )( ) ( ) ( )g P N
E

E E E m P E m N E g   = − = − =  . 

By Theorem 17,  

     ( ) ( ) ( ) ( )
gv g g g

E
E E g E I E I   + −

= = +  +   

               
E

g=  , 

as we have just shown that ( ) ( ) 0g gE I E I + − =  = . 

Now,  ( ) ( ) ( ) ( )g x P x N x g a = + − , where a I  is the anchor point used in the 

definition of the total variation function of g.  Note that ( ) ( )P x g a− is absolutely 

continuous on I and hence is a Lusin function on I.  Therefore, 

( ) ( )( ) ( ) ( ) ( )
gv P g a N P g a NE E E E   − + −= = +  
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            ( *( )) ( ( ))m P E m N E= + , where *( ) ( ) ( )P x P x g a= − ,  

            ( ( )) ( ( ))m P E m N E= + . 

Therefore, as g  is continuous on I, by Theorem 6, 

          ( ) ( )( ) ( )( )( ) ( ) ( )
gg v g

E
m E E E m P E m N E g   = = = + =  . 

The last assertion is from Theorem 17. 

This completes the proof of Proposition 21. 

 

Finally,   

Theorem 22. Let I be an open interval and ( )g BV I .  Let 

   :  is discontinuous at disI x I g x=  ,    

   :  is continuous at  and  is differentiable at  with ( )  I x I g x g x g x+
=  = +  and 

   :  is continuous at  and  is differentiable at  with ( )  I x I g x g x g x−
=  = − . 

Then for every Borel set E I  , 

  ( ) ( ) ( )( ) ( ) ( )
dis

g g g
E

y E I

E g E I E I g y g y  + − + −

 

= +  +  + − ,  

( ) ( )( ) ( ) ( )
dis

g g g
E

y E I

E g E I E I g y g y  + − + −

 

= +  +  + −  and 

( ) ( ) ( ) ( )( )( ) ( ) ( )
g

dis

v g g
E

x E I

E g E I E I g x g x g x g x  + − + −

 

= +  +  + − + − . 

Moreover, there exists a Borel set disN I I −  with ( )( ) ( ) ( ) 0
gv gm N N m N = = =  

such that for all ( )disx I I N −   ( ) ( )gv x g x =  .  Note that  ( ) 0g E I −  . 

Proof. 

( )( ) ( )( )g g dis g disE E I E I  = − +     

      ( )( ) ( )( )
dis

g dis g dis
E I

g E I I E I I + −
−

= + −  + −   

      ( ) ( ) ( )
ab c sg dis g dis g disE I E I E I  +  +  +  , by Theorem 17,  

      ( ) ( ) ( )0 0 ( ) ( )
diis

g g
E

y E I

g E I E I g y g y + − + −

 

= +  +  + + + − , by Theorem 19, 
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      ( ) ( ) ( )( ) ( )g g
E

y E

g E I E I g y g y + − + −



= +  +  + − .   

( )( ) ( )( )g g dis g disE E I E I  = − +   

  ( )( ) ( )( )
dis

g dis g dis
E I

g E I I E I I + −
−

= + −  + −  + ( )g disE I  , by Theorem 17, 

  ( ) ( )g g
E

g E I E I + −
= +  −  + ( )g disE I  . ----------------- (1)  

Now for any  disF E I  ,   

( ) ( ) ( ) ( ) ( )
ab c s sg dis g dis g dis g dis g disF I F I F I F I F I     =  +  +  =  , by Theorem 19. 

Therefore, 

     ( ) ( ) ( ) ( )
s

dis

g dis g dis

y E I

E I E I g y g y  + −

 

 =  = − .     --------------------- (2) 

It follows that  

      ( ) ( )( ) ( ) ( )
dis

g g g
E

y E I

E g E I E I g y g y  + − + −

 

= +  −  + − .  -------------- (3) 

( ) ( ) ( ) ( ) ( )
g g g gv v dis v dis g dis v disE E I E I E I E I    = − +  = − +  , by Theorem 19, 

          ( ) ( ) ( )
g

dis
g g v dis

E I
g E I E I E I  + −

−
= +  +  +  , by Theorem 17, 

  ( ) ( ) ( )
gs

g g v dis
E

g E I E I E I  + −
= +  +  +    by Theorem 19 (d) 

  ( ) ( ) ( )( ) ( ) ( ) ( )g g
E

y E

g E I E I g y g y g y g y + − + −



= +  +  + − + − . 

The last assertion came from Theorem 17. 

 

Remark 23. 

1.  Note that if :g I →  is absolutely continuous and I is a bounded interval, 

then by Lemma 2 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation, g is of bounded variation.  Therefore, 

Proposition 21 applies when :g I →  is absolutely continuous and I is a 

bounded interval. 

2.  We have, in the proof of Theorem 17, deduced that for any Borel set E in I, 

            ( ) ( )g gE I E I + + =   

            ( ) ( )( )
gv gE I m E I + +=  =  , by Theorem 19 and Theorem 6. 
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By Proposition 20, ( ) ( ) ( )( )g PE I E I m P E I + + + =  =  . 

Therefore, ( )( ) ( )( )gm E I m P E I + + =  . 

Similarly, 

            ( ) ( ) ( ) ( )( )
gg g v gE I E I E I m E I   − − − − =  =  =  , by Theorem 6. 

We deduce similarly as above that 

                   ( ) ( ) ( )( )g NE I E I m N E I − − − = −  = −  , where N is the negative 

variation of g, and so we have ( )( ) ( )( )gm E I m N E I − − =  . 

Hence, 

( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )
g

dis

v g g
E

x E I

E g m E I m E I g x g x g x g x  + − + −

 

= +  +  + − + −     

( )( ) ( )( ) ( ) ( )( )( ) ( )
dis

E
x E I

g m P E I m N E I g x g x g x g x+ − + −

 

= +  +  + − + −  

( )( ) ( )( ) ( ) ( )( )( ) ( )
E

x E

g m P E I m N E I g x g x g x g x+ − + −



= +  +  + − + − . 

( )( ) ( )( ) ( )( ) ( ) ( )
dis

g g g
E

y E I

E g m E I m E I g y g y  + − + −

 

= +  −  + −  

         ( )( ) ( )( ) ( )( ) ( )
E

y E

g m P E I m N E I g y g y+ − + −



= +  −  + −   

By Theorem 22 and Remark 23 (2), In terms of measure of the images we have: 

Corollary 24. Let I be an open interval and ( )g BV I .  Let 

   :  is discontinuous at disI x I g x=  ,    

   :  is continuous at  and  is differentiable at  with ( )  I x I g x g x g x+
=  = +  and 

   :  is continuous at  and  is differentiable at  with ( )  I x I g x g x g x−
=  = − . 

Then for every Borel set E I  , 

  ( )( ) ( )( ) ( )( ) ( ) ( )
dis

g g g
E

y E I

E g m E I m E I g y g y  + − + −

 

= +  −  + −  

             ( )( ) ( )( ) ( )( ) ( )
E

y E

g m P E I m N E I g y g y+ − + −



= +  −  + − ,

( )( ) ( )( )( ) ( ) ( )
dis

g g g
E

y E I

E g m E I m E I g y g y  + − + −

 

= +  +  + −  

          ( )( ) ( )( ) ( ) ( )
E

y E

g m P E I m N E I g y g y+ − + −



= +  +  + −  
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 and 

( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )
g

dis

v g g
E

x E I

E g m E I m E I g x g x g x g x  + − + −

 

= +  +  + − + −  

           ( )( ) ( )( ) ( ) ( )( )( ) ( )
E

x E

g m P E I m N E I g x g x g x g x+ − + −



= +  +  + − + − . 

Moreover, there exists a Borel set disN I I −  with ( )( ) ( ) ( ) 0
gv gm N N m N = = =  

such that for all ( )disx I I N −  , ( ) ( )gv x g x =  .  Note that  ( ) 0g E I −  . 

If g is continuous at every point of E, then  

            ( )( ) ( )( ) ( )( )( ) ( )
gg v g g g

E
m E E E g m E I m E I    + −

= = = +  +  . 

 

Remark 25.    

1.   Suppose I is an open interval and g is a function of bounded variation on I. 

Note that 
gv P N  = + , where P and N are respectively the positive and negative 

variations of g.  Therefore, if g is continuous on E, 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )
gg v g g

E
m E E m P E m N E g m E I m E I   + −

= = + = +  +   

                 ( )( ) ( )( )
E

g m P E I m N E I+ −
= +  +  . 

We also have that  

( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )g P N g g
E

E E E m P E m N E g m E I m E I    + −
= − = − = +  −   

          ( )( ) ( )( )
E

g m P E I m N E I+ −
= +  −  . 

Thus, if g is continuous on I and if ( )( )g
I

g m I = = total variation of g on I, 

then ( )( ) ( )( ) 0g gm I m I + −= = .  It follows that g  is a Lusin Function.  

Therefore, by Theorem 15 of Absolutely Continuous Function on Arbitrary 

Domain and Function of Bounded Variation, g  is absolutely continuous and so 

g is absolutely continuous.   

2.  Suppose I is an open interval and g is a function of bounded variation on I. 

By Theorem 19, for any Borel set ,E I  ( ) ( ) ( ) ( )
g g g gab c s

E E E E      = + + . 

Since 
abg  is absolutely continuous, by Proposition 21, we have 

         ( ) ( ) ( )( ) ( )
ab g abab

g v g ab
E E E

m E E g g  
  = = = =   . 
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By Theorem 19 (c),  ( ) ( )( )( ) ( ) ( )
gs

x E

E g x g x g x g x + −



= − + − .     

Now, ( ) ( ) ( ) ( )
g g g gc c c c

dis dis disE E I E I E I      = − +  = −  

                        ( ) ( ) ( )
g g gc c c

disE I I I E I E I    + − + −= − − − +  +  . 

Note that ( ) ( ) ( ) ( ) ( )
g g g g g g gc c s c s ab

E I E I E I E I E I        
+ ++ + + + + =  =  +  =  , 

since ( )( ) ( ) 0
g abab

gE I m E I + + =  =  as 
abgv  is absolutely continuous and 

( ) 0m E I+ = .   We deduce in the same manner that ( ) ( )
g gc

E I E I  − − =  .               

We show below that  ( )( ) 0.
gc

disE I I I + −−   =   Let disN I I −  be the subset as 

given in the proof of  Theorem 17 such that ( )( ) ( ) ( ) 0
ggm N m v N N= = = .   Then 

it follows that  ( ) ( ) ( ) ( ) 0
g g g g gab c c s s

v vN N N N    
+

= = = =  as 

( ) ( ) ( ) ( )
g g g gab c s

N N N N      = + + . Thus,  

          ( )( ) ( )( )
g gc c

dis disE I I I E I I I N  + − + −−   = −    . 

Note that ( ) 0dism I I I N+ −   = .   Let ( )disB E I I I N+ −= −    . 

Let  ( ) : ( ) 0cH x B g x=  =  .  Then by Theorem 16, ( ) ( ) 0
c g c

g vH H = = .  Since 

( ) ( ) 0cg x =  on H.   Since ( ) ( ) 0cg x = almost everywhere, ( ) 0m B H− = .  Note that 

g is differentiable finitely on B and so on B−H.  By Theorem 16, since 

( ) 0m B H− = , ( ) 0g B H − = . Hence,  ( ) ( ) 0
gv gB H B H − = − = .   As 

( ) 0
gab

v B H − = , ( ) 0
g gc s

v B H
+

− = . It follows that ( ) ( ) 0
g g gc c s

v vB H B H 
+

− = − = .  

Therefore, as ( ) 0
gc

v N = ,   ( )( ) 0
gc

disE I I I + −−   =  and 

( ) ( ) ( )
g g gc

E E I E I    + −=  +  .  Thus, ( )( ) ( )( )( )
gc

E m P E I m N E I + −=  +  .  

This gives another proof of Theorem 17.   

3.  Suppose I is an open interval and g is a function of bounded variation on I. 

( ) ( ( )) ( )g g dis g disE E I I E I  =  − +   

         ( ( )) ( ( )) ( )P dis N dis g disE I I E I I E I  =  − −  − +   

          ( ) ( )( ( )) ( ( )) ( )dis dis g dism P E I I m N E I I E I=  − −  − +  ,  

                      by Theorem 6, since P and N are continuous on disI I− ,  

        ( )( ) ( )( )
( )

( ( ( )
dis

g dis
E I I

g m P E I I m N E I I E I+ − + −
 −

= +   −   +  , 

                       by Theorem 2 of A de La Vallée Poussin’s Decomposition, 
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        ( )( ) ( )( ) ( )g dis
E

g m P E I m N E I E I+ −
= +  −  +  , 

                     since ( )( ) ( )( )0 and 0 m P E I m N E I− + =  = , 

       ( )( ) ( )( ) ( )( ) ( )
E

y E

g m P E I m N E I g y g y+ − + −



= +  −  + − , by Theorem 19. 

Similarly, 

( ) ( ( )) ( )
g g gdis disE E I I E I    =  − +   

         ( ( )) ( ( )) ( )
gP dis N dis v disE I I E I I E I  =  − +  − +   

           ( ) ( )( ( )) ( ( )) ( )
gdis dis v dism P E I I m N E I I E I=  − +  − +    

         ( )( ) ( )( )
( )

( ( ( )
g

dis
v dis

E I I
g m P E I I m N E I I E I+ − + −

 −
= +   +   +  , 

                       by Corollary 3 of A de La Vallée Poussin’s Decomposition, 

        ( )( ) ( )( ) ( )
gv dis

E
g m P E I m N E I E I+ −
= +  +  +  , 

                     since ( )( ) ( )( )0 and 0 m P E I m N E I− + =  = , 

       ( )( ) ( )( ) ( ) ( )( )( ) ( )
E

x E

g m P E I m N E I g x g x g x g x+ − + −



= +  +  + − + − ,  

              by Theorem 19. 

( ) ( ( )) ( )g g dis g disE E I I E I  =  − +   

     ( ( )) ( )
gv dis g disE I I E I =  − +   

     ( )( ) ( )( ) ( )g dis
E

g m P E I m N E I E I+ −
= +  +  +   

          by using Corollary 3 of A de La Vallée Poussin’s Decomposition as above, 

     ( )( ) ( )( ) ( ) ( )
E

y E

g m P E I m N E I g y g y+ − + −



= +  +  + − , by Theorem 19. 

This gives another proof of Corollary 24. 

 

Lebesgue Stieltjes Integral 

Suppose :f I → is a Borel function or more precisely Borel measurable 

function.  Suppose :g I →  is an increasing function.  Then we have the 

Lebesgue Stieltjes measure, g , which is a positive Radon measure.   In the 

standard way we can define the Lebesgue integral of a non-negative function f 

with respect to the Lebesgue Stieltjes measure g ,  
g

I
fd .  This is called the 

Lebesgue Stieltjes integral.  For the characteristic function of a Borel set in I, 

( )B g g
I

d B  = .  Thus, we can define the Lebesgue Stieltjes integral for a 

simple Borel function.  For a non-negative Borel function, f, the Lebesgue 
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Stieltjes integral, 
g

I
fd , is just the Lebesgue integral of f with respect to the 

Lebesgue Stieltjes measure g . (See Definition 19 in Introduction To Measure 

Theory.)  Note that for a non-negative Borel function, f, there exists a monotone 

increasing sequence of simple Borel functions converging pointwise to f and by 

the Lebesgue Monotone Convergence Theorem, the Lebesgue Stieltjes integral 

of f  is the limit of the sequence of the Lebesgue Stieltjes integral of the Borel 

simple functions of the sequence.  This may be infinite.  In general, for a Borel 

measurable function f, we can define 
g

B
fd as

g g
B B

f d f d + −−  , whenever it is 

not of the form ( ) ( )+ − + .   

Suppose g is a function of bounded variation on I.  Note that g  is a finite 

signed Radon measure and  and 
gg v   are finite Radon measures. (See Theorem 

8 and its proof.) Then, following Introduction To Measure Theory, we can 

define in the usual manner, the following Lebesgue Stieltjes integrals for any 

Borel set E in I. 

                              
g

E
fd  , 

g
E

fd   and 
gv

E
fd . 

Suppose g is a right continuous function of bounded variation. By Theorem 9, 

in the Jordan decomposition of the finite real Borel measure, 
g g g  + −= − , 

g P + =  and  
g N − = .  Therefore, for any Borel measurable function, :f I → , 

and any Borel set E in I,  

              
g g g P N

E E E E E
fd fd fd fd fd    + −= − = −     . 

We assume that 
P N

E E
fd fd −   is not of the form ( ) or ( )+− + −− − . 

We now assume g is absolutely continuous.  It follows that P and N are also 

absolutely continuous. Therefore, by Theorem 6, for any Borel set E in I,  

            ( ) ( ( ))P E m P E =  

                      
E

P dm=  , 

by Theorem 13 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation.    

Now, 
P P P

E E E
fd f d f d  + −= −   .  We assume that 

P P
E E

f d f d + −−   is not of 

the form ( ) +− + . 



51 

 

Therefore, by Proposition 28 of Introduction to Measure Theory, 

P P
E E E E E

f d f d f P dm f P dm f P dm + − + −  − = − =     .   Thus 
P

E E
fd f P dm =  .  

Similarly, assuming that 
N N

E E
f d f d + −−   is not of the form ( ) +− + , we 

deduce that 
N

E E
fd f N dm =  .   It follows that                     

( ) ( )g
E E E E E E

fd f P dm f N dm f P N dm f P N dm f g dm     = − = − = − =      .  Hence, 

                                          g
E E

fd f g dm =  .          ------------------------- (1)  

Now for any Borel set E in I,  

           ( ) ( ) ( ( ))
gg v gE E m E  = = , since g is continuous on I,  

                     g
E

dm =  , 

by Theorem 13 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation.  It follows, by Proposition 28 of Introduction to 

Measure Theory, that  

           
gg v g

E E E E
fd fd f v dm f g dm   = = =    .   ---------------------- (2) 

We note that we may define ( ) 0g x =  when g is not differentiable finitely since 

the set { :   is not differentiable finitely at }x I g x  is of measure zero and that both g 

and g  are Lusin functions so that the definition will not affect the identities (1) 

and (2).              

Thus, we have 

Theorem 26.  Suppose :f I → is a Borel function and :g I → is a right 

continuous function of bounded variation. We assume that 
P N

E E
fd fd −   is 

not of the form ( ) or ( )+− + −− − , where P and N are the positive and 

negative variation functions of g.   Then we can define  

               
g g g P N

E E E E E
fd fd fd fd fd    + −= − = −     . 

If 
P N

E E
fd fd +   is not of the form ( ) or ( )++ − −+ + , we can define 

              
g g g P N

E E E E E
fd fd fd fd fd    + −= + = +     . 

Suppose g is absolutely continuous.  Then assuming that  
P P

E E
f d f d + −−   

and  
N N

E E
f d f d + −−  are not of the form ( ) +− + , we have that 
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           g
E E

fd f g dm =    and 
gg v g

E E E E
fd fd f v dm f g dm   = = =    . 

 

Theorem 27.  Suppose :g I →  is an increasing bounded function.  Then the 

Lebesgue Stieltjes measure g   is a finite positive Borel measure.   Suppose  

:f I →  is a continuous function on the closed and bounded interval [a, b], 

where a < b and ,a b I .  Then f is Lebesgue-Stieltjes integrable on [a, b] and 

there exists [ , ]c a b  such that  

                            ( )( ( ) ( ))
b

g
a

fd f c g b g a + −= − . 

Proof.   If g is a constant function, or ( ) ( )g b g a+ −= then we have nothing to 

prove, for we can just take any c in [a, b].  

Now we assume that ( ) ( )g b g a+ − . Since f is continuous on [a, b], f is Borel on 

[a, b], it follows by a standard argument that f is Lebesgue-Stieltjes integrable 

on [a, b].  Since f is continuous on [a, b], there exists M and m such that 

( )m f x M   for all x in [a, b].  Therefore,  
b b b

g g g
a a a

md fd Md      .  Now,  

( )[ , ] ( ) ( )g a b g b g a + −= −  and so 
( ) ( )

b

g
a

fd
m M

g b g a



+ −

 
−


.   Therefore, by the 

Intermediate Value Theorem, there exists c in [a, b] such that  

( )
( ) ( )

b

g
a

fd
f c

g b g a



+ −

=
−


. This completes the proof.  

Theorem 28.  Suppose :g I →  is an increasing bounded function and I is an 

open interval. Suppose a < b and ,a b I .  Suppose :[ , ]f a b →  is a Lebesgue 

Stieltjes integrable function with respect to the Lebesgue Stieltjes measure g .  

Suppose f is bounded on [a, b].  Define for x in  [ , ]a b , ( )
x

g
a

F x f d=  .   

(i)  If g is continuous at c in [a, b], F is continuous at c. 

(ii)  If g is continuous in [a, b] or in a neighbourhood of c in [a, b] and is 

differentiable at c and f is continuous at c, then F is differentiable at c and 

( ) ( ) ( )F c f c g c = . 

Proof.  

(i)   Suppose , [ , ]x c a b , c b  and x c .   ( ) ( )
x

g
c

F x F c f d− =  .   Therefore, 
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                  ( ) ( )
x x

g g
c c

F x F c f d f d − =   . 

Since f is bounded, there exists M > 0 such that ( )f x M  for all x in [a, b].  It 

follows that 

           ( )( ) ( ) [ , ] ( ( ) ( ))
x

g g
c

F x F c Md M c x M g x g c  + −−  = = −  -------------- (1) 

Therefore,  

                       ( )lim ( ) ( ) ( ) ( )
x c

F x F c M g c g c+ −−  − .  

It follows that if g is continuous at c, then lim ( ) ( ) 0
x c

F x F c− = . 

Hence, if c = a and g is continuous at c, then F is continuous at c. 

Similarly, we can show that if , [ , ]x c a b , c a  and x c ,  

              ( )( ) ( ) [ , ] ( ( ) ( ))
c

g g
x

F x F c Md M x c M g c g x  + −−  = = − . 

It follows that ( )lim ( ) ( ) ( ) ( )
x c

F x F c M g c g c+ −−  − .  Therefore, if g is continuous at 

c, then lim ( ) ( ) 0
x c

F x F c− = .   It follows that if c =b and g is continuous at c, then 

F is continuous at c.   Moreover if a c b   and g is continuous at c, then 

lim ( ) ( ) lim ( ) ( ) 0
x c x c

F x F c F x F c− = − = .  Therefore, F is continuous at c.  This proves 

part (i). 

(ii) 

Suppose a c b  .  Suppose x c  and [ , ]x a b .   Let  inf ( ) : [ , ]xm f x x c x=   and 

 inf ( ) : [ , ]xM f x x c x=  .  Then we have 

                                 
x x x

x g g x g
c c c

m d fd M d      . 

Therefore, there exists x x xm L M    such that  

                     ( )([ , ]) ( ) ( )
x

g x g x
c

fd L c x L g x g c  + −= = − . 

Therefore, 

                    
( ) ( )( ) ( )

lim lim lim lim

x

g
c

x
x c x c x c x c

fd g x g cF x F c
L

x c x c x c


+ −−−

= =
− − −


. --------------- (2) 
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Since f is continuous at c, lim ( )x
x c

L f c= .  As g is differentiable at c and 

continuous in a neighbourhood of c, 

                    
( ) ( ) ( ) ( ) ( ) ( )

lim lim lim ( )
x c x c x c

g x g c g x g c g x g c
g c

x c x c x c

+ − +− − −
= = =

− − −
. 

Hence, 
( ) ( )

lim ( ) ( )
x c

F x F c
f c g c

x c

−
=

−
.  Similarly, we can show that 

( ) ( )
lim ( ) ( )
x c

F x F c
f c g c

x c

−
=

−
. It follows that ( ) ( ) ( )F c f c g c = . 

 

Integration by Parts 

 

The next result is a technical result that we shall use to prove a version of the 

integration by parts theorem. 

Theorem 29.    Suppose  : B((a, b)) → [0, ∞) and  : B((a, b)) → [0, ∞) are 

two finite Borel measures define on the Borel -algebra generated by the open 

sets of the open interval (a, b).  Define for x  (a, b),   

                  ( ) ( )( )
1

( ) ( , ] ( , )
2

f x a x a x = +  and 

                  ( ) ( )( )
1

( ) ( , ] ( , )
2

g x a x a x = + . 

Then ( ) ( )
( , ) ( , )

( , ) ( , )
a b a b

f d g d a b a b   + =   . 

Proof.  Note that both ( ) ( )( , ]  and ( , )a x a x   are increasing and non-negative.  

Therefore, they are Borel measurable and bounded since  is finite.  Similarly, 

( ) ( )( , ]  and ( , )a x a x   are Borel measurable bounded increasing functions. 

Let  ( , ) ( , ) ( , ) :E x y a b a b x y=    .  For each ( , )x a b , let  ( , ) : ( , )xE y a b x y E=    

and for each ( , )y a b , let  ( , ) : ( , )yE x a b x y E=   .  By Theorem 8 of Product 

Measure and Fubini’s Theorem, 

                ( ) ( )
( , ) ( , )

( ) ( ) ( ) ( )y

x
a b a b

E d x E d y E     = =   .  ---------------------- (1) 

Observe that    ( , ) : ( , ) ( , ) : [ , )yE x a b x y E x a b x y y b=   =   =  and 

   ( , ) : ( , ) ( , ) : ( , ]xE y a b x y E y a b x y a x=   =   = . 
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It follows from (1) that  

                 ( )
( , ) ( , )

( , ] ( ) ([ , )) ( )
a b a b

a x d x y b d y   =  .   -------------------- (2) 

For a y b  , ( , ) ( , ) [ , )a b a y y b=   and so 

                  ( ) ( ) ( )( ) [ , ) ( , ) ( , )yE y b a b a y   = = −  . 

Thus,  
( , ) ( , ) ( , )

([ , )) ( ) (( , )) ( ) (( , )) ( )
a b a b a b

y b d y a b d y a y d y     = −    

                                      ( )
( , )

(( , )) ( , ) (( , )) ( )
a b

a b a b a y d y   = −  . ------------- (3) 

Therefore, 

         ( ) ( )
( , ) ( , ) ( , )

( , ] ( ) ([ , )) ( ) (( , )) ( , ) (( , )) ( )
a b a b a b

a x d x y b d y a b a b a y d y       = = −    

and so 

               ( ) ( )
( , ) ( , )

( , ] ( ) (( , )) ( ) (( , )) ( , )
a b a b

a x d x a y d y a b a b     + =  .  ------------- (4) 

Interchanging the role of  and , we get from (4), 

             ( ) ( )
( , ) ( , )

( , ] ( ) (( , )) ( ) (( , )) ( , )
a b a b

a y d y a x d x a b a b     + =  . -------------- (5) 

Thus, from (4) and (5), we obtain, 

  ( ) ( )( ) ( ) ( )
( , ) ( , )

1 1
( , ] ( , ) ( ) (( , ]) (( , )) ( ) (( , )) ( , )

2 2a b a b
a y a y d y a x a x d x a b a b       + + + =  . 

We note that (a, b) may be unbounded, i.e., (a, b) may be 

( , ) or ( , ) or ( , )b a− + − + .  

This completes the proof of Theorem 29. 

We have a similar result when the domain is a closed and bounded interval. 

Theorem 30.    Suppose  : B([a, b]) → [0, ∞) and  : B([a, b]) → [0, ∞) are 

two finite Borel measures define on the Borel sets of [a, b].  Define for x  [a, 

b],   

                  ( ) ( )( )
1

( ) [ , ] [ , )
2

f x a x a x = +  and 

                  ( ) ( )( )
1

( ) [ , ] [ , )
2

g x a x a x = + . 

Then ( ) ( )
[ , ] [ , ]

[ , ] [ , ]
a b a b

f d g d a b a b   + =   . 



56 

 

Proof.  The proof is similar to that for Theorem 29. 

Let  ( , ) [ , ] [ , ]:E x y a b a b x y=    .  For each [ , ]x a b , let 

         [ , ]: ( , ) [ , ]xE y a b x y E a x=   =  

 and for each [ , ]y a b ,  

          let  [ , ]: ( , ) [ , ]yE x a b x y E y b=   = .  By Theorem 8 of Product Measure 

and Fubini’s Theorem, 

                ( ) ( )
[ , ] [ , ]

( ) ( ) ( ) ( )y

x
a b a b

E d x E d y E     = =   .  ---------------------- (1) 

It follows from (1) that  

                 ( )
[ , ] [ , ]

[ , ] ( ) ([ , ]) ( )
a b a b

a x d x y b d y   =  .   -------------------- (2) 

For a y b  , [ , ] [ , ) [ , ]a b a y y b=   and so 

                  ( ) ( ) ( )[ , ] [ , ] [ , )y b a b a y  = = −  . 

Thus,  
[ , ] [ , ] [ , ]

([ , ]) ( ) ([ , ]) ( ) ([ , )) ( )
a b a b a b

y b d y a b d y a y d y     = −    

                                      ( )
[ , ]

([ , ]) [ , ] ([ , )) ( )
a b

a b a b a y d y   = −  . ------------- (3) 

Therefore, 

         ( ) ( )
[ , ] [ , ] [ , ]

[ , ] ( ) ([ , ]) ( ) ([ , ]) [ , ] ([ , )) ( )
a b a b a b

a x d x y b d y a b a b a y d y       = = −    

and so 

               ( ) ( )
[ , ] [ , ]

[ , ] ( ) ([ , )) ( ) ([ , ]) [ , ]
a b a b

a x d x a y d y a b a b     + =  .  ------------- (4) 

Interchanging the role of  and , we get from (4), 

             ( ) ( )
[ , ] [ , ]

[ , ] ( ) ([ , )) ( ) ([ , ]) [ , ]
a b a b

a y d y a x d x a b a b     + =  . -------------- (5) 

Thus, from (4) and (5), we obtain, 

  ( ) ( )( ) ( ) ( )
[ , ] [ , ]

1 1
[ , ] [ , ) ( ) ([ , ]) ([ , )) ( ) ([ , ]) [ , ]

2 2a b a b
a y a y d y a x a x d x a b a b       + + + =  . 

This completes the proof of Theorem 30. 

Remark.  Theorem 30 holds if [ , ] ( , ] or [ , ) or ( , ) a b b a= − + − + .  
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The next theorem is a key result towards formulating an integration by parts 

formula. 

 

Theorem 31.  Let I be an open interval.  Let  , ( )u v BV I .  Then for any interval 

( , )a b I , 

                    
( , ) ( , )

( ) ( ) ( ) ( )
2 2

v u
a b a b

u u v v
d d u b v b u a v a + − + −

− − + +

+ +
+ = −  . 

In particular, if there are no points in (a, b) at which both u and v are 

discontinuous, then    

                     
( , ) ( , )

( ) ( ) ( ) ( )v u
a b a b

ud vd u b v b u a v a  − − + ++ = −  . 

Proof. 

We shall prove the first part of the theorem when , ( )u v BV I  are increasing 

functions.   

Suppose u and v are increasing bounded functions on I.  Then we have the 

associated Lebesgue Stieltjes measures,  u  : B(I) → [0, ∞) and v  : B(I) → [0, 

∞) are two finite Radon measures. Suppose a, b  I and a < b.  For a x b  , by 

Theorem 5, ( )( , ] ( ) ( )u a x u x u a + += − ,   ( )( , ) ( ) ( )u a x u x u a − += − , 

( )( , ] ( ) ( )v a x v x v a + += − , and ( )( , ) ( ) ( )v a x v x v a − += − . 

By Theorem 29, 

( ) ( )
( , ) ( , )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
v u

a b a b
u x u a u x u a d x v x v a v x v a d x + + − + + + − +− + − + − + −   

                        ( ) ( )( )(( , )) ( , ) ( ) ( ) ( ) ( )u va b a b u b u a v b v a  − + − += = − − . 

Hence,  

( ) ( )
( , ) ( , )

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2
v u

a b a b
u x u x d x v x v x d x + − + −+ + +   

( )( )( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , )v uu b u a v b v a u a a b v a a b − + − + + += − − + +  

( ) ( ) ( )( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )uv b v a u b v a a b v b v a u b u b u a v a− + − + − + − − + += − + = − + −  

( ) ( ) ( ) ( )u b v b u a v a− − + += − . 

This proves the first part of the theorem when u and v are increasing. 
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In general, we write u uu P N= −   and v vv P N= − , where ,  and ,u v u vP P N N  are the 

positive and negative variation functions of u and v respectively. 

By the case for increasing functions, as positive and negative variation functions 

of a function of bounded variation are increasing, we have: 

   
( , ) ( , )

( ) ( ) ( ) ( )
2 2v u

u u v v
P P u v u v

a b a b

P P P P
d d P b P b P a P a + − + −

− − + +

+ +
+ = −  , --------------- (1) 

  
( , ) ( , )

( ) ( ) ( ) ( )
2 2v u

u u v v
N P u v u v

a b a b

P P N N
d d P b N b P a N a + − + −

− − + +

+ +
+ = −  , ------------- (2) 

( , ) ( , )
( ) ( ) ( ) ( )

2 2v u

u u v v
P N v u v u

a b a b

N N P P
d d P b N b P a N a + − + −

− − + +

+ +
+ = −  , -------------- (3) 

And 

 
( , ) ( , )

( ) ( ) ( ) ( )
2 2v u

u u v v
N N u v u v

a b a b

N N N N
d d N b N b N a N a + − + −

− − + +

+ +
+ = −  . ---------- (4) 

Subtracting (2) from (1), we obtain, 

     ( )
( , ) ( , )2 2v v u

u u v v v v
P N P

a b a b

P P P N P N
d d d  + − + + − −+ − + −

− +   

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u v v u v v u uP b P b N b P a P a N a P b v b P a v a− − − + + + − − + += − − − = − . 

Thus,  
( , ) ( , )

( ) ( ) ( ) ( )
2 2 u

u u
v P u u

a b a b

P P v v
d d P b v b P a v a + − + −

− − + +

+ +
+ = −  .  -------------- (5) 

Subtracting (4) from (3) we get: 

     ( )
( , ) ( , )2 2v v u

u u v v v v
P N N

a b a b

N N P N P N
d d d  + − + + − −+ − + −

− +   

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u v v u v v u uN b P b N b N a P a N a N b v b N a v a− − − + + + − − + += − − − = − . 

Hence, 
( , ) ( , )

( ) ( ) ( ) ( )
2 2 u

u u
v N u u

a b a b

N N
d d N b v b N a v a

 
 + − + −

− − + +

+ +
+ = −  .  ----------- (6) 

(5) – (6) gives: 

           ( )
( , ) ( , )2 2 u uv P N
a b a b

u u v v
d d d  + − + −+ +

+ −   

                            ( ) ( )( ) ( ) ( ) ( ) ( ) ( )u u u uP b N b v b v a P a N a− − − + + += − − − . 

Therefore, 
( , ) ( , )

( ) ( ) ( ) ( )
2 2

v u
a b a b

u u v v
d d u b v b u a v a + − + −

− − + +

+ +
+ = −  . 
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This proves the first part of the theorem. 

Suppose there are no points in (a, b) where u and v are both discontinuous.  

Note that since u and v are of bounded variation on (a, b), points of 

discontinuities of u and v are at most countable.  Let S be the points of 

discontinuities of u in (a, b).  Then v is continuous at all points in S.  Therefore, 

( ) 0v S =  and  

                 
( , ) ( , ) ( , ) ( , )2 2

v v v v
a b a b S a b S a b

u u u u
d d ud ud   + − + −

− −

+ +
= = =    . 

Similarly, we can deduce that 

                 
( , ) ( , )2

u u
a b a b

v v
d vd + −+

=  . 

Hence, 
( , ) ( , )

( ) ( ) ( ) ( )v u
a b a b

ud vd u b v b u a v a  − − + ++ = −  . 

This completes the proof of Theorem 31. 

 

In general, u and v may have common points of discontinuities, then we shall 

have a correction term for the integration by parts formula. 

Since the points of discontinuities of u and v are at most countable, the formula 

for singleton sets will be useful, for instance, at the end points of a Borel set, 

where the integral is to be taken.  

For any x I  ,  ( ) ( )
{ }

( ) ( ) ( ) ( )v v
x

ud u x x u x v x v x  + −= = −  , 

 ( ) ( )
{ }

( ) ( ) ( ) ( )u u
x

vd v x x v x u x u x  + −= = − and  ( ) ( ) ( ) ( ) ( )uv x u x v x u x v x + + − −= − . 

Therefore, 

 ( )  ( )  ( ) ( )
{ } { }

( ) ( ) ( ) ( ) ( ) ( )v u uv v u
x x

ud vd x u x x v x x u x v x u x v x     + + − −+ − = + − −   

      ( )  ( )  ( )  ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v u v uu x x v x x u x x u x v x v x x u x v x   + + − − + −= + − + + −  

     ( )  ( ) ( )  ( )( ) ( ) ( ) ( )v uu x u x x v x v x x + −= − + − . 

Also, 

 ( ) ( )  ( ) ( )  ( )
{ } { }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v u uv v u
x x

ud vd x u x u x u x u x x v x v x v x v x x    − − + + + −+ − = − + − + + − − 
               ( )  ( )  ( )  ( ) ( )  ( )  ( )  ( )( ) ( ) ( ) ( )v u v u u vu x u x x x x v x v x x x x     − += − − + − +  

               ( )  ( ) ( )  ( )( ) ( ) ( ) ( )v uu x u x x v x v x x − += − + − . 
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It follows that   

         ( )( )
{ } { }

2 v u uv
x x

ud vd x  + −   

             ( )  ( ) ( )  ( )2 ( ) ( ) ( ) 2 ( ) ( ) ( )v uu x u x u x x v x v x v x x + − + −= − − + − − . 

Therefore,  

 
{ } { }

v u
x x

ud vd + =   

( )  ( ) ( )  ( )  ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2

v u uvu x u x u x x v x v x v x x x  + − + −

   
= − + + − + +   
   

. 

Thus, we have proved the following: 

Theorem 32.  Let I be an open interval.  Let  , ( )u v BV I .  Then for any x I ,

{ } { }
v u

x x
ud vd + =   

( )  ( ) ( )  ( )  ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2

v u uvu x u x u x x v x v x v x x x  + − + −

   
= − + + − + +   
   

. 

 

Theorem 33.  Let I be an open interval.  Let  , ( )u v BV I .  Then for any interval 

( , )a b I , 

( , ) ( , )
v u

a b a b
ud vd +   

( ) ( )  ( ) ( )  ( )
1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

uv v u

x D x D

a b u x u x u x x v x v x v x x  + − + −

 

   
= + − + + − +   

   
  , 

where  ( , ) :  and  are discontinuous at .D x a b u v x=  .   

Proof.  Let uS  , vS  be the sets of discontinuities in (a, b) of u and v respectively. 

Let u vD S S=    and uT S D= − .  Then T is at most countable and v is continuous 

at all points in T. 

          
( , ) ( , ) ( , ) ( , )2 2

v v v v
a b D a b D T a b D T a b D

u u u u
d d ud ud   + − + −

− − − − − −

+ +
= = =     , 

since ( ) 0v T = . 

Similarly, we can show that  
( , ) ( , )2

u u
a b D a b D

v v
d vd + −

− −

+
=  .  

Therefore,   
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( , ) ( , )2 2

u u v v
a b D D a b D D

v v u u
vd d ud d   + − + −

− −

+ +
+ + +     

          
( , ) ( , )2 2

u v
a b a b

v v u u
d d + − + −+ +

= +   

           ( ) ( ) ( ) ( )u b v b u a v a− − + += − ,  

 by Theorem 31. 

Thus,  

 
( , ) ( , )

( ) ( ) ( ) ( )
2 2

u v u v
a b D a b D D D

v v u u
vd ud u b v b u a v a d d   + − + −

− − + +
− −

+ +
+ = − − −    . 

Therefore, 

( , ) ( , ) ( , ) ( , )
u v u v u v

a b a b a b D a b D D D
vd ud vd ud vd ud     

− −
+ = + + +       

      ( )( , )
2 2

uv u v u v
D D D D

v v u u
a b d d vd ud    + − + −+ +

= − − + +      

     ( ) ( )  ( ) ( )  ( )
1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

uv v u

x D x D

a b u x u x u x x v x v x v x x  + − + −

 

   
= + − + + − +   

   
 

This completes the proof of Theorem 33. 

 

Remark 34. 

With notation as in Theorem 33, by Theorem 32, 

 ( )  ( ) ( )  ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2

v u

x D x D

u x u x u x x v x v x v x x + − + −

 

   
− + + − +   

   
   

 ( )( )
{ } { }

( )v u uv v u uv
x x D D

x D

ud vd x ud vd D     


= + − = + −     . 

It follows that 

            ( ) ( )
( , ) ( , )

( , ) ( ) ( , )u v uv uv uv
a b D a b D

vd ud a b D a b D    
− −

+ = − = −  . 

 

From Theorem 32 and Theorem 33, we have the following variation of 

Theorem 33. 

Theorem 35.  Let I be an open interval.  Let  , ( )u v BV I .  Then for any a < b in 

I, 
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[ , ) [ , )
v u

a b a b
ud vd +   

              ( ) ( )  ( )
{ }

1
[ , ) ( ) ( ) ( )

2
uv v

x D a

a b u x u x u x x + −

 

 
= + − + 

 
  

                 ( )  ( )
{ }

1
( ) ( ) ( )

2
u

x D a

v x v x v x x+ −

 

 
+ − + 

 
 ,  

( , ] ( , ]
v u

a b a b
ud vd +   

              ( ) ( )  ( )
{ }

1
( , ] ( ) ( ) ( )

2
uv v

x D b

a b u x u x u x x + −

 

 
= + − + 

 
  

                 ( )  ( )
{ }

1
( ) ( ) ( )

2
u

x D b

v x v x v x x+ −

 

 
+ − + 

 
  and 

 
[ , ] [ , ]

v u
a b a b

ud vd +   

               ( ) ( )  ( )
{ , }

1
[ , ] ( ) ( ) ( )

2
uv v

x D a b

a b u x u x u x x + −

 

 
= + − + 

 
   

               ( )  ( )
{ , }

1
( ) ( ) ( )

2
u

x D a b

v x v x v x x+ −

 

 
+ − + 

 
 , 

where  ( , ) :  and  are discontinuous at .D x a b u v x=  .   

Remark.  If I is a closed and bounded interval, [ , ]I a b=  and , ([ , ])u v BV a b , 

then we can use Theorem 30 to deduce the following, 

                  
[ , ] [ , ]

( ) ( ) ( ) ( )
2 2

v u
a b a b

u u v v
d d u b v b u a v a + − + −

+ + − −

+ +
+ = −  , 

and that 
[ , ] [ , ]

v u
a b a b

ud vd +   

               ( ) ( )  ( )
1

[ , ] ( ) ( ) ( )
2

uv v

x D

a b u x u x u x x + −



 
= + − + 

 
   

               ( )  ( )
1

( ) ( ) ( )
2

u

x D

v x v x v x x+ −



 
+ − + 

 
 , 

where  [ , ]:  and  are discontinuous at .D x a b u v x=  .   

 

Corollary 36. Let I be an open interval.  Let  , ( )u v BV I  and a < b be in I.  Let

 ( , ) :  and  are discontinuous at .D x a b u v x=   
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(a) If D is empty or if ( )
1

( ) ( ) ( )
2

u x u x u x+ −= +  and ( )
1

( ) ( ) ( )
2

v x v x v x+ −= + for all x in 

D, then ( )
( , ) ( , )

( , )v u uv
a b a b

ud vd a b  + =  . 

(b) If u and v are continuous on the right at all points of D, then 

  ( )  ( )  ( )
( , ) ( , )

( , )v u uv u v
a b a b

x D

ud vd a b x x    


+ = +  . 

(c)  If u and v are continuous on the left at all points of D, then 

  ( )  ( )  ( )
( , ) ( , )

( , )v u uv u v
a b a b

x D

ud vd a b x x    


+ = −  . 

(d) If the function :w I →  is continuously differentiable in I and with compact 

support in I and ( )v BV I , then 0v
I I

w dy wd  + =  . 

Proof.  

Parts (a), (b) and (c) follow from Theorem 33. 

Suppose w is continuously differentiable with compact support.  Then the 

support of w is a closed set in I and I is open and so it is a closed set contained 

in an open interval, say, (a, b), in I.  Then by continuity of w and the 

compactness of the support of w, | |w K  , for some K > 0.  It follows by the 

Mean Value Theorem, that w is Lipschitz with constant K.  Hence, w is 

absolutely continuous.  By Theorem 33, 
( , ) ( , )

0w v
a b a b

d wd  + =   since 

( ) ( ) 0w a w b+ −= = .  Since w is absolutely continuous, 
( , ) ( , )

w
a b a b

d w dx   =  .  Now, 

( , )
0w

I a b
d 

−
=  since ( ( , )) 0w I a b − =  and ( ) 0w x =  for ( , )x I a b − , we have that 

                                       0v
I I

wdx wd  + =  . 

Remark 37. 

Suppose I is an open interval.  Theorem 31 and Theorem 33 hold when the 

domain of the integral is taken to be the whole of I.  If ( , )I c d= , then we can 

take a sequence of nested intervals,  ( , )n na b , with , ( , ),n n n na b c d a b   such that 

na c  and nb d .   Apply the theorems with ( , ) ( , )n na b a b=  and take limits. 

The same argument applies when ( , ) or ( , ) or ( , )I d c= − + − + . 

Thus, we have that for an open interval I and , ( )u v BV I , 

  v u
I I
ud vd +   
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( ) ( )  ( ) ( )  ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2

uv v u

x D x D

I u x u x u x x v x v x v x x  + − + −

 

   
= + − + + − +   

   
  , 

where  :  and  are discontinuous at .D x I u v x=  .    

 

Change of Variable 

We shall next present several versions of a change of variable theorem for 

Lebesgue Stieltjes integral. 

Firstly, we introduce the notion of a generalized inverse of an increasing 

function.  We introduce the two most common types of inverse.  We shall use 

both of them, but give more elaboration to the left continuous inverse.  

Definition 38. 

Suppose I is an interval and :g I → is an increasing function.  Let J be the 

smallest interval containing the image of g, g(I).  

If the interval I is bounded from below, then we define the generalized inverse 

:v J →  by  ( ) inf : ( )v y x I g x y=    for y in J.  Note that since the interval I is 

bounded from below,  is well defined and does not take the value −∞. 

If the interval I is bounded from above, then we define the generalized inverse 

: J →  by  ( ) sup : ( )y x I g x y =    for y in J.  Likewise, since the interval I is 

bounded from above,  is well defined and does not take the value ∞. 

 

Properties of the inverses  ,  . 

Proposition 39. Suppose I is an interval bounded from below and :g I → is an 

increasing function.  Let J be the smallest interval containing the image of g, 

g(I). Let :v J →  be defined by  ( ) inf : ( )v y x I g x y=    for y in J. 

(i)  is an increasing left continuous function on J, 

(ii)  v has a discontinuity jump at some point 0 sup ( )y J g I −  if, and only if, 

0( )g x y=  for all x in some interval 1 2( , )x x I  with 1 2x x , 

(iii) ( ( ))g x x   for every x in I.   ( ( ))g x x  if, and only if, g is constant on some 

closed interval, [ , ]z x I  with z x  , 
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(iv)  0( )y x =  for all y in some open interval  1 2( , )y y J  with 1 2y y and for some 

0x  in the interior of I if, and only if, g has a discontinuity jump at 0x  and

( )1 2 0 0( , ) ( ), ( )y y g x g x− + . In particular, if g is strictly increasing, then  is a left 

inverse of g and is continuous. 

(v)  For any y J , ( ( )) ( ( ))g y y g y − +  . 

Proof. 

(i)  Take 1 2,y y J   with 1 2y y  .  Then    2 1: ( ) : ( )x I g x y x I g x y     and so

   1 2inf : ( ) inf : ( )x I g x y x I g x y     .  It follows that 

   1 1 2 2( ) inf : ( ) inf : ( ) ( )y x I g x y x I g x y y =      = .  Hence,  is an increasing 

function on J.  

Now we shall show that  is left continuous.  Take 0y J .  If 0 inf ( ) infy g I J= = , 

then we have nothing to prove.  Assume now 0 inf ( ) infy g I J = .  

 0 0( ) inf : ( )y x I g x y =   .  Note that if  0: ( )z x I g x y   , then 

 0 0inf : ( ) ( )z x I g x y v y   = .  Thus, 

               if 0 and ( )z I z v y   , then 0( )g z y .       -------------------------- (1) 

We note that  

                          for any z I , ( ( ))v g z z , ----------------------------------- (2) 

 since   ( ( )) inf : ( ) ( )g z x I g x g z =    and   : ( ) ( )z x I g x g z   .    

If 0 ( )z v y  and 0( )g z y , then ( ) ( )0( )z v g z v y   contradicting 0 ( )z v y .  This 

proves assertion (1) above. 

Take any 0  .  Since 0 inf ( ) infy g I J = , there exists z I such that 

0( )g z y .   If  0( ( )) ( )v g z v y= , then v is constant on 0[ ( ), ]g z y  and so  is left 

continuous at 0y .  We now assume that v is not left constant at some left 

neighbourhood of 0y  . Therefore, we may assume that  0( ( )) ( )v g z v y  for all

0( )g z y .  That is to say, 0( ) infv y I .  Then 0 0[ ( ) , ( ))I v y v y −  . 

Take a point 0 0 0[ ( ) , ( ))z I v y v y  − .  Thus, since 0 0 0( ) ( )v y z v y−   , by (1), 

0 0( )g z y .   For any ( )0 0( ),y g z y ,   0( ) inf : ( )v y x I g x y z=     .  This is because 

if 0( )v y z  , then there exists 0 0x z  such that 0( )g x y and so 0 0( ) ( )y g x g z  , 
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contradicting 0( )y g z .  It follows that 0 0 0( ) ( ) ( )v y v y z v y    − .  This means 

that  is left continuous at 0y  . 

(ii)  Suppose v has a discontinuity jump at 0 sup ( ) supy J g I J J − = − .  By part (i) 

the discontinuity jump at 0y  must be a right jump, i.e., 0 0( ) ( )v y v y+ .  Now recall 

that   0 0( ) inf : ( )v y x I g x y=   .   If z I  and 0( )z v y , then 0( )g z y  .  We 

deduce this as follows.  0( )z v y  implies that there exists  0 0: ( )x x I g x y    

such that 0x z  and 0 0( )g x y . Thus,  0 0( ) ( )g z g x y  .   For any x in I such that 

0 0( ) ( )v y x v y+  , for all 0y y  , 0( ) ( )v y v y x+   since v is increasing.  Therefore, 

by (1), ( )g x y .  It follows that  0( )g x y .   Since 0( )x y , 0( )g x y . It follows 

that 0( )g x y=  for all 0 0( ( ), ( ))x v y v y+ .  Take 1 0 2 0( ) and ( )x v y x v y+= = . 

Conversely, suppose 0( )g x y=  in some interval 1 2( , )x x I  with 1 2x x .  Then 

 0 0 1( ) inf : ( )v y x I g x y x=     as  1 2 0( , ) : ( )x x x I g x y   .  If  0( ,sup )y y J  , then 

for every 1 2( , )x x x  , we have that 0( )g x y y=   and so 

                          ( ) inf : ( )v y x I g x y x=    . 

We deduce this as follows.  If  ( )v y x  for 1 2( , )x x x , then there exists 

 0 : ( )x x I g x y   such that 0x x  and 0( )g x y . Thus,  0( )v y x x   and 

0 0( ) ( )y g x g x y  = , contradicting  0y y .  It follows that ( )v y x  for all 

1 2( , )x x x  and so 2( )v y x .  This means 2( )v y x for all 0( ,sup )y y J .  Taking the 

limit as 0y y , we have that  0 2( )v y x+  .  Hence, 0 1 2 0( ) ( )v y x x v y+   .  It 

follows that  has a jump discontinuity at 0y  . 

(iii)  For every x I  ,  ( ( )) inf : ( ) ( )v g x z I g z g x x=    , as   : ( ) ( )x z I g z g x   . 

Suppose ( ( ))v g x x for some x I . Then there exists  0 : ( ) ( )x z I g z g x   such 

that 0x x  and 0( ) ( )g x g x .  Since g is increasing,  0( ) ( )g x g x=  and g is constant 

on 0[ , ]x x I  .  Conversely, suppose g is constant on [ , ]z x I , with  z x .   Then 

( ( ))v g x z  as   [ , ] : ( ) ( )z x y I g y g x   .  It follows that ( ( ))v g x x . 

(iv)  Suppose v is constant in some open interval 1 2( , )y y J  with 0( )y x =  for all 

y in 1 2( , )y y  and for some 0x  in the interior of I. 

Note that if 0 ( )z x v y = , then ( )g z y .  ------------------- (3) 
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This is because there exists  0 : ( )z x I g x y    such that 0z z  so that 

0( ) ( )g z g z y  . This means that for any 0 ( )z x v y =  and for all 1 2( , )y y y , 

( )g z y .  Therefore, for any 0z x , 2( )g z y .  Thus, taking limit as 0z x , we 

obtain  0 2( )g x y+  .   On the other hand, if 0 ( )z x v y = , then by (1),  ( )g z y .  

Thus, for any 0z x and for any 1 2( , )y y y , ( )g z y .  It follows that 1( )g z y .  

Now, letting 0z x  , we deduce that 0 1( )g x y−  .  Hence 0 1 2 0( ) ( )g x y y g x− +   . 

This means ( )1 2 0 0( , ) ( ), ( )y y g x g x− +  and g has a jump discontinuity at 0x . 

Conversely, suppose g has a jump discontinuity at  0x  for some 0x  in the interior 

of I, that is to say,  0 0( ) ( )g x g x− + .  Take any 0 0( ( ), ( ))y g x g x− + .   Then 0( )v y x . 

This is because if 0( )v y x , then there exists  0 : ( )z x I g x y   with 0 0z x  so 

that 0 0( ) ( )y g z g x−  , contradicting that 0( )y g x− .   Thus, for all 0x x  ,  since v 

is increasing, together with part (iii) we get, 

                   ( ) ( )0( ) ( ) ( )v y v g x v g x x+   . 

Hence, 0( )v y x .  Therefore, 0( )v y x=  for all 0 0( ( ), ( ))y g x g x− + . 

Suppose now g is strictly increasing.  By part (i),  is increasing and left 

continuous.  By part (ii), v cannot have a right jump in supJ J− .  If sup J J , 

then plainly v is continuous at sup J .  Hence   is continuous in J.  By part (iii), 

( ( ))v g x x=  for all x in I, since g is non-constant in any subinterval of I.  Thus, v 

is a left inverse of g.  

(v)  By definition,  ( ) inf : ( )y x I g x y =   , so for any ( )x y , there exists  

such that z x  and ( )g z y  so that ( )g x y .  Therefore, ( ( ))g y y+  .  We have 

shown that if ( )z y , then ( )g z y . (See (1).)  Hence, ( ( ))g y y−  .  It follows 

that ( ( )) ( ( ))g y y g y − +  . 

This completes the proof of Proposition 39. 

 

We now state the corresponding result for the other generalized inverse . 

Proposition 40. Suppose I is an interval bounded from above and :g I → is an 

increasing function.  Let J be the smallest interval containing the image of g, 

g(I). Let : J → be defined by  ( ) sup : ( )y x I g x y =    for y in J.   

(i)   is an increasing right continuous function on J, 

z I
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(ii)    has a discontinuity jump at some point 0 inf ( )y J g I −  if, and only if, 

0( )g x y=  for all x in some interval 1 2( , )x x I  with 1 2x x , 

(iii) ( ( ))g x x   for every x in I.   ( ( ))g x x  if, and only if, g is constant on some 

closed interval, [ , ]x z I  with x z  , 

(iv)  0( )y x =  for all y in some open interval 1 2( , )y y J  with 1 2y y and for some 

0x  in the interior of I if, and only if, g has a discontinuity jump at 0x  and 

( )1 2 0 0( , ) ( ), ( )y y g x g x− + . In particular, if g is strictly increasing, then   is a left 

inverse of g and is continuous. 

(v)  For any y J  ,  ( ( ) ( ( ))g y y g y − +   . 

Proof. 

The proof is similar to that of Proposition 39.  Nevertheless, we shall present the 

proof. 

(i)  Take 1 2,y y J   with 1 2y y  .  Then    1 2: ( ) : ( )x I g x y x I g x y     and so

   1 2sup : ( ) sup : ( )x I g x y x I g x y     .  It follows that 

   1 1 2 2( ) sup : ( ) sup : ( ) ( )y x I g x y x I g x y y =      = .  Hence,  is an increasing 

function on J.  

Now we shall show that  is right continuous.  Take 0y J .  If 

0 sup ( ) supy g I J= = , then we have nothing to prove.  Assume now 

0 sup ( ) supy g I J = .   0 0( ) sup : ( )y x I g x y =   .  Note that if  0: ( )z x I g x y   , 

then  0 0sup : ( ) ( )z x I g x y y   = .  Thus, 

               if 0 and ( )z I z y   , then 0( )g z y .       -------------------------- (1) 

We note that  

                          for any z I , ( ( ))g z z  , ----------------------------------- (2) 

 since   ( ( )) sup : ( ) ( )g z x I g x g z =    and   : ( ) ( )z x I g x g z   .    

If 0 ( )z y  and 0( )g z y , then ( ) ( )0( )z g z y   contradicting 0 ( )z y .  This 

proves assertion (1) above. 

Take any 0  .  Since 0 sup ( ) supy g I J = , there exists z I such that 

0( )g z y .   If  0( ( )) ( )g z y = , then  is constant on 0[ , ( )]y g z  and so  is right 

continuous at 0y .  We now assume that  is not right constant at some right 
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neighbourhood of 0y  . Therefore, we may assume that  0( ( )) ( )g z y   for all

0( )g z y .  That is to say, 0( ) supy I  .  Then 0 0( ( ), ( ) ]I y y   +  . 

Take a point 0 0 0( ( ), ( ) ]z I y y    + .  Since 0 0 0( ) ( )y z y    + ,  by (1), 

0 0( )g z y .   For any ( )0 0, ( )y y g z ,   0( ) sup : ( )y x I g x y z =     .  This is because 

if 0( )y z   , then there exists 0 0x z  such that 0( )g x y and so 0 0( ) ( )y g x g z  , 

contradicting 0( )y g z .  It follows that 0 0 0( ) ( ) ( )y y z y      + .  This means 

that  is right continuous at 0y  . 

(ii)  Note that if inf ( ) infg I J J=  ,   is continuous at inf J by part (i). 

Suppose  has a discontinuity jump at 0 inf ( ) infy J g I J J − = − .  By part (i), the 

discontinuity jump at 0y  must be a left jump, i.e., 0 0( ) ( )y y −  .  Now recall that  

 0 0( ) sup : ( )y x I g x y =   .   If z I  and 0( )z y , then 0( )g z y  .  We deduce 

this as follows.  0( )z y  implies that there exists  0 0: ( )x x I g x y    such that 

0x z  and 0 0( )g x y . Thus,  0 0( ) ( )g z g x y  .   For any x in I such that 

0 0( ) ( )y x y −   , for all 0y y  , 0( ) ( )y y x −  , since  is increasing.  

Therefore, by (1), ( )g x y , for all 0y y .  It follows that  0( )g x y .   Since 

0( )x y , 0( )g x y . Hence, 0( )g x y=  for all 0 0( ( ), ( ))x y y − .  Take 

1 0 2 0( ) and ( )x y x y −= = . 

Conversely, suppose 0( )g x y=  in some interval 1 2( , )x x I  with 1 2x x .  Then 

 0 0 2( ) sup : ( )y x I g x y x =     as  1 2 0( , ) : ( )x x x I g x y   .  If  0(inf , )y J y  , then 

for every 1 2( , )x x x  , we have that 0( )g x y y=   and so 

                          ( ) sup : ( )y z I g z y x =    . 

We deduce this as follows.  If  ( )y x   for 1 2( , )x x x , then there exists 

 0 : ( )x z I g z y   such that 0x x  and 0( )g x y . Thus,  0( )y x x    and 

0 0( ) ( )y g x g x y  = , contradicting  0y y .  It follows that ( )y x   for all 

1 2( , )x x x  and so 1( )y x  .  This means 1( )y x  for all 0(inf , )y J y .  Taking the 

limit as 0y y , we have that  0 1( )y x−  .  Hence, 0 1 2 0( ) ( )y x x y −    .  It 

follows that  has a jump discontinuity at 0y  . 

(iii)  For every x I ,  ( ( )) sup : ( ) ( )g x z I g z g x x =    , as   : ( ) ( )x z I g z g x   . 

Suppose ( ( ))g x x  for some x I . Then there exists  0 : ( ) ( )x z I g z g x   such 

that 0x x  and 0( ) ( )g x g x .  Since g is increasing,  0( ) ( )g x g x=  and g is constant 
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on 0[ , ]x x I  .  Conversely, suppose g is constant on [ , ]x z I , with  z x .   Then 

( ( ))g x z   as   [ , ] : ( ) ( )x z y I g y g x   .  It follows that ( ( ))g x x  . 

(iv)  Suppose  is constant in some open interval 1 2( , )y y J  with 0( )y x =  for all 

y in 1 2( , )y y  and for some 0x  in the interior of I. 

Note that if 0 ( )z x y = , then ( )g z y .  ------------------- (3) 

This is because there exists  0 : ( )z x I g x y    such that 0z z  so that 

0( ) ( )g z g z y  . This means that for any 0 ( )z x y =  and for all 1 2( , )y y y , 

( )g z y .  Therefore, for any 0z x , 1( )g z y .  Thus, taking limit as 0z x , we 

obtain  0 1( )g x y−  .   On the other hand, if 0 ( )z x y = , then by (1),  ( )g z y .  

Thus, for any 0z x and for any 1 2( , )y y y , ( )g z y .  It follows that 2( )g z y .  

Now, letting 0z x  , we deduce that 0 2( )g x y+  .  Hence 0 1 2 0( ) ( )g x y y g x− +   . 

This means ( )1 2 0 0( , ) ( ), ( )y y g x g x− +  and g has a jump discontinuity at 0x . 

Conversely, suppose g has a jump discontinuity at  0x  for some 0x  in the interior 

of I, that is to say,  0 0( ) ( )g x g x− + .  Take any 0 0( ( ), ( ))y g x g x− + .   Then 0( )y x  . 

This is because if 0( )y x  , then there exists  0 : ( )z x I g x y   with 0 0z x  so 

that 0 0( ) ( )y g z g x+  , contradicting that 0( )y g x+ .   Thus, for all 0x x  ,  since 

 is increasing, together with part (iii) we get, 

                   ( ) ( )0( ) ( ) ( )y g x g x x  −   . 

Hence, 0( )y x  .  Therefore, 0( )y x =  for all 0 0( ( ), ( ))y g x g x− + . 

Suppose now g is strictly increasing.  By part (i),  is increasing and right 

continuous.  By part (ii),  cannot have a left jump in infJ J− .  Thus,  is 

continuous in infJ J− .  If inf J J , then plainly,  is continuous at inf J .  It 

follows that  is continuous in J.  By part (iii) ( ( ))g x x =  for all x in I since g is 

non-constant in any subinterval of I.  Thus,  is a left inverse of g.  

(v)  By definition,  ( ) sup : ( )y x I g x y =   , so for any ( )x y , there exists 

z I  such that z x  and ( )g z y  so that  ( )g x y .  Therefore, ( ( ))g y y−  .  We 

have shown that if ( )z y , then ( )g z y .  Hence, ( ( ))g y y+  .  It follows that 

( ( )) ( ( ))g y y g y − +  .     

Remark 41.  
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In Proposition 39 (iv) and Proposition 40 part (iv), we have required that the 

generalised inverses,  and  , take a value in the interior of the domain, I.  This 

is not a necessary requirement. 

For the various possible situation when  may take the value of the infimum or 

the supremum of I, part (iv) actually holds. 

For the definition of , we require that I be bounded above.  If :g I →  is an 

increasing function, then J is the smallest interval containing g(I).  Note that J 

need not be bounded.  Suppose inf( ( )) inf( )g I J J=  .  Then either  inf( )J = −or 

inf( )J  − .  If inf( )J = − , then inf I I .  If  inf( )J  − , then either inf( )J J or 

inf( )J J .   

We now assume that the interval I is bounded above.   

Supremum of J. 

(1)  Suppose sup I I .   

If sup( ( )) sup( )g I J J=  , then there does not exists 0y J  such that 0( ) supy I = .  

We deduce this as follows. Suppose 

                        0 0( ) sup : ( ) supy x I g x y I =   = . 

Then, for all x in I, 0( )x y  ,  0( )g x y .  Hence, 0sup ( ) supg I J y=   

contradicting 0sup J y  .  

If sup( ( )) ( )g I g I , then there exists 0x I  such that 0 0sup( ( )) ( )g I g x y= = .   Note 

that  0 0 0( ) sup : ( ) supy x I g x y I x =   =  .   For all z I  such that 0 supx z I  , as 

g is increasing, 0 0( ) ( )g x g z y= =  for 0 supx z I  .  That is to say, g is constant on  

0[ ,sup )x I .   

(2) Suppose sup I I . 

Then sup( ( )) sup( ) (sup )g I J g I J= =  .   Let 0 supx I=  .  Then

0 0sup ( ) sup ( )y g I J g x= = =  since g is increasing.  

Moreover  0 0 0( ) sup : ( )y x I g x y x =   = .  

Suppose 0( )y x =  for all y in 1 0( , ]y y  for some 1y J with 1y y . For any z I , 

0 ( )z x y =   for any y in 1 0( , ]y y .   Then ( )g z y  . Therefore, 1( )g z y .  It 

follows that 0 1 0 0( ) ( )g x y y g x−   = .  This shows that g is discontinuous at 0x . 
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Conversely, suppose g has a jump at 0x .  That is  0 0 0( ) ( )g x y g x−  = . Take y J  

such that 0 0 0( ) ( )g x y y g x−   = . For any z I  , 0z x  implies that 

( ) ( )0 0( ) ( ) ( )x y g x g z z  −     .  Letting 0z x  , we conclude that 0( )y x =  for 

all 0 0 0 0( ( ), ( )] ( ( ), ]y g x g x g x y− − = . 

Infimum of J. 

(3)  Suppose inf I = − .  Then as ( )y  − ,  parts (1) to (2) cover the situation 

when ( ) supy I = . 

(4)  Suppose inf I  −  .   

If inf ( ) infg I J J=  , then inf( )I I . For any y J , infy J so that there exist 

0x I  such that 0( )y g x  and so 0( ) infy x I   .  Parts (1) to (2) cover the 

situation when . 

If inf ( ) infg I J J=  , then inf ( ) (inf ) infg I g I J= = .  Let 0 0 0inf  and ( )x I y g x= = . 

Now, 0 0 0( ) ( ( )y g x x =  . If 0 0 0( ) ( ( )y g x x =  , then for x I  with 0 0( )x x y   

0( )g x y  and so 0( )g x y=  as 0( )g x y . That means g is constant on 0 0[ , ( ))x y

taking the value 0y . Let 0 0( )y z = .  Then 0 0z x  . Moreover, 0 0( )g z y− = , if  0 0z x

.  Suppose now   is constant on 0 1[ , )y y with 0 1y y  for some 1y J  and 0( )y z =  

for all 0 1[ , )y y y .  For all 0 ( )z z y = and any 0 1[ , )y y y , ( )g z y .  Therefore,  

1( )g z y .  It follows that 0 1 0 0( ) ( )g z y y g z+ −  = .  Hence, g is discontinuous at 0z .  

Conversely, suppose g is discontinuous at 0z .  I.e., 0 0 0( ) ( ) infg z g z y J+ − = = . 

Then for all 0 0( ( ), ( ))y g z g z− + , 0( )y z  . This is because if 0( )y z  , then there 

exists  1 : ( )x x I g x y   with 1 0x z  so that 1 0( ) ( )y g x g z+  , contradicting that 

0( )y g z+ .  Thus, for all 0x z  , since  is increasing, we get, 

( ) ( )0( ) ( ) ( )y g z g x x  −   . Hence, 0( )y z  .  Therefore, 0( )y z =  for all 

0 0( ( ), ( ))y g z g z− + . 

Remark 42.  

The situation with the extreme values of  in part (iv) of Proposition 39 is 

elaborated as follows. 

For the definition of , we require that I be bounded below.  If :g I →  is an 

increasing function, then J is the smallest interval containing g(I).  Note that J 

need not be bounded.  Suppose sup( ( )) sup( )g I J J=  .  Then either  sup( )J =  or 

sup( )J   .  If sup( )J =  , then sup I I .  If  sup( )J   , then either sup( )J J or 

sup( )J J .   

( ) supy I =
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We now assume that the interval I is bounded below.   

Infimum of J 

(1)  Suppose inf I I .   

If inf( ( )) inf( ) ( )g I J g I=  , then inf( ( ))g I J .  There does not exist 0y J  such that 

0( ) infy I = .  We deduce this as follows. Suppose 

                        0 0( ) inf : ( ) infy x I g x y I =   = . 

Then, for all x in I, 0( )x y  , 0( )g x y .  Hence, 0inf ( ) infg I J y=   contradicting 

0inf J y  . 

If inf( ( )) ( )g I g I , then there exists 0x I  such that 0 0inf( ( )) ( )g I g x y= = .  Note 

that inf ( ) infg I J= .  Now  0 0 0( ) inf : ( ) infy x I g x y I x =   =  .   For all z I  such 

that 0 infx z I  , as g is increasing, 0 0( ) ( )g x g z y= =  .  That is to say, g is 

constant on 0(inf , ]I x . Note that 0( )y I  .  

(2) Suppose inf I I . 

Then inf( ( )) inf( ) (inf )g I J g I J= =  .   Let 0 infx I=   and 0 0inf ( ) inf ( )y g I J g x= = = .  

Moreover  0 0 0( ) inf : ( )y x I g x y x =   = .  

Suppose 0( )y x =  for all y in 0 1[ , )y y   for some 1y J  and 1 0y y .  For any z I , 

0 ( )z x y =   for any y in 0 1[ , )y y .   Then ( )g z y  . Therefore, 1( )g z y .  It 

follows that 0 1 0 0( ) ( )g x y y g x+   = .  This shows that g is discontinuous at 0x . 

Conversely, suppose g has a jump at 0x .  That is,  0 0 0( ) ( )g x y g x+  = .  Take y J  

such that 0 0 0( ) ( )y g x y g x+=   .  For any z I  , 0z x  implies that 

( ) ( )0 0( ) ( ) ( )x y g x g z z  +     .  Letting 0z x  , we conclude that 0( )y x =  for 

all 0 0 0 0[ ( ), ( ) [ , ( ))y g x g x y g x+ + = . 

Supremum of J. 

(3)  Suppose sup I =   . 

As ( )y   ,  parts (1) to (2) cover the situation when ( ) infy I = . 

(4) Suppose now sup( )I  + . 

If sup ( ) ( )g I g I , then it follows that sup ( )g I J and that sup I I .  As remark 

above, for all y J , there exist 0x I  such that 0( )y g x  and so 0( ) supy x I   .    



74 

 

If sup ( ) ( )g I g I , then there exists 0x I  such that 0 0( ) sup ( ) supg x g I J y= = =  and 

so 0 0 0( ) ( ( ))v y v g x x  .  Thus, for all y J  , 0 0( ) ( )v y v y x  .  If 0 supx I I=  , and 

if there exists 1y I  with 1 0y y  such that for all 1 0( , ]y y y , 0( )v y x= .  Then for 

all z I  with 0 ( )z x y = , ( )g z y  and so 1( )g z y .  It follows that  

0 1 0 0( ) ( )g x y y g x−   =  and so g is discontinuous at 0x .  Conversely, suppose g is 

discontinuous at 0 supx I= . That means   0 0 0( ) ( )g x y g x−  = . Now, for 

0 0( ( ), ( )]y g x g x− , 0( )y g x  and so 0( )v y x .  For 0z x  , 0( ) ( )g z g x y   for all 

0 0( ( ), ( )]y g x g x− .  Therefore, ( )z v y  and so 0( )v y x .  Hence, 0( )v y x=  for 

0 0( ( ), ( )]y g x g x− . 

Proposition 43.  Suppose I is an open interval and :g I →  is an increasing 

function. Let  with .   

(i) Suppose I is bounded below. 

Then ( )y     if, and only if, ( ) ( )g y g + +  .   In particular, if g is also 

right continuous, we have ( ) ( ) ( )g y g y         . 

(ii) Suppose I is bounded above. 

Then ( )y      if, and only if, ( ) ( )g y g − −  .   In particular, if g is also left 

continuous, we have ( ) ( ) ( )g y g y         . 

Proof.   

We shall prove only part (i).  Part (ii) is similarly proven. 

If ( )y g + , then ( )v y  .  Suppose on the contrary that ( )v y  .  If ( )v y  , 

then ( ) ( )y g g +  , contradicting ( ).y g +   If ( )v y = ,  then for all z I , 

( )z y  = , we have that ( )g z y  and it follows that ( ( )) ( )g y g y + +=  , 

contradicting ( ).y g +   Hence, we must have ( )v y  . 

Hence, ( )v y   implies that ( ).y g +  

If ( )y g + ,  then ( )y  .  This is because ( ) ( ( )) ( ( ))y g v g x x  +    for all 

x  ,  since g and  are increasing and ( ) ( )g x g + .  Therefore, ( )y  .  

Hence, ( )y g +  implies that ( )y  .   

It follows that  ( )y  implies that ( )y g + .  

Therefore, for , I     with   , ( ) ( )g y g + +   if, and only if ( )y    . 

 

, I    
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We are now ready to state and prove the various versions of change of variable 

theorem. 

Theorem 44.  Suppose I is an open interval and :g I → is an increasing 

function.  Let : [0, )f I →   be a non-negative Borel function.  Let ,a b I  with 

a b  . 

(i)  Suppose the interval I is bounded from below and g is right continuous.  

Then 

                      
( )

( , ] ( )
( ) ( ) ( ( ))

g b

g
a b g a

f x d x f y dy =  , 

where  g  is the Lebesgue Stieltjes measure generated by g and  is the 

generalised inverse of g as defined in Definition 38. 

(ii)  Suppose the interval I is bounded from above and g is left continuous.  

Then 

                      
( )

[ , ) ( )
( ) ( ( ))

g b

g
a b g a

f x d f y dy =  ,  

where   is the Lebesgue Stieltjes measure generated by g and  is the 

generalised inverse of g as defined in Definition 38. 

Proof. 

Part (i) 

We shall prove the theorem for the case when f is the characteristic function of a 

half-open and half-closed interval, ( , ]   in I where    . 

Let  ( , ]f  =  . 

If ( , ] ( , ]a b   = , then ( , ]
( , ] ( , ]

( ) ( ) ( ) 0g g
a b a b

f x d x d x   = =  . 

By Proposition 43, ( ) ( )g a y g b   if, and only if, ( )a y b   .  Therefore, 

( ) ( )

( , ]
( ) ( )

( ( )) ( ( )) 0
g b g b

g a g a
f y dy y dy   = =  , since ( , ] ( , ]a b   = .   Hence the theorem 

is true for these characteristic functions.  

Suppose now ( , ] ( , ]a b    .  Then ( , ] ( , ] ( , ]a b s t   = , where max{ , }s a=  

and min{ , }t b= .  Therefore,  

             ( , ] ( , ]
( , ] ( , ] ( , ]

( ) ( ) ( ) ( ) ( ) ( )g g s t g
a b a b a b

f x d x d x d x g t g s     = = = −   . 

g
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The last equality in the above statement is a consequence of the right continuity 

of g. 

Again, by Proposition 43, ( ) ( )g a y g b   if, and only if, ( )a y b  , so that  

      
( ) ( )

( , ] ( ( ), ( )] ( ( ), ( )]
( ) ( )

( ( )) ( ( ))
g b g b

g a g b g g
g a g a J

f y dy y dy dy       = =    

                            min{ ( ), ( )} max{ ( ), ( )}g b g g a g = −   

                            ( ) ( )g t g s= − , since g is increasing. 

It follows that 
( )

( , ] ( , ]
( , ] ( )

( ) ( ( ))
g b

g
a b g a

d x y dy      =  . 

Hence, the theorem is true for characteristic functions of a half open and half-

closed interval, ( , ]   in I. 

Now we define two positive Radon measures as follows. 

For any Borel set B in B(I), let 

     1
( , ]

( ) ( ) ( )B g
a b

B x d x  =     and  
( )

2
( )

( ) ( ( ))
g b

B
g a

B y dy  =  . 

Then 1 2 and    are positive Borel measures on B(I) since I is an open interval, 

by Corollary 4 of Product Measure and Fubbini’s Theorem, 1 2 = .   By 

Theorem 3, 1 2 and    are Radon measures. 

Therefore, the theorem holds when f is the characteristic function of a Borel set. 

Hence, the theorem is true for any simple Borel function.  By Theorem 16 of 

Introduction to Measure Theory, there exists a monotone sequence of simple 

Borel function { }ns  converging to f pointwise.  Therefore, by the Lebesgue 

Monotone Convergence Theorem (see Theorem 23 of Introduction to Measure 

Theory), 
( , ] ( , ]

( ) ( ) ( ) ( )n g g
a b a b

s x d x f x d x →   and 
( ) ( )

( ) ( )
( ( )) ( ( ))

g b g b

n
g a g a

s y dy f y dy →  .  

Therefore, 
( )

( , ] ( )
( ) ( ) ( ( ))

g b

g
a b g a

f x d x f y dy =  .  In particular, it follows that 

( , ]
( ) ( )g

a b
f x d x    if, and only if, 

( )

( )
( ( ))

g b

g a
f y dy   .      

Part (ii) 

The proof is similar to part (i).  We proceed analogously as in part (i) to deduce 

that 
( )

[ , ) ( )
( ) ( ( ))

g b

g
a b g a

f x d f y dy =   for characteristic function of [ , )  . The proof 

then proceeds as in part (i). 
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This completes the proof of Theorem 44.  

 

Suppose :f I →  is a Borel function.  Then max{ ,0}f f+ =   and max{ ,0}f f− = −  

are Borel functions and f f f+ −= − .  We say f is g  integrable over (a, b], if 

( , ] ( , ]
( ) ( ) ( ) ( )g g

a b a b
f x d x f x d x + −−   is not of the form ( ) ( )+ − + .  In view of 

Theorem 44, if I is bounded below, f is g  integrable over (a, b] if, and only if, 

f   is Lebesgue integrable over [ ( ), ( )]g a g b  , whereas when I is bounded above, 

f is g  integrable over [ , )a b  if, and only of, f   is Lebesgue integrable over 

[ ( ), ( )]g a g b .  

We can now extend Theorem 44 to any Borel function :f I → . 

Theorem 45.  Suppose I is an open interval and :g I → is an increasing 

function.  Let :f I →  be a Borel function. Let ,a b I  with a b  . 

(i) Suppose the interval I is bounded from below and g is right continuous.  

Then 

                      
( )

( , ] ( )
( ) ( ) ( ( ))

g b

g
a b g a

f x d x f y dy =  , 

whenever 
( )

( , ] ( )
( ) ( )  or ( ( ))

g b

g
a b g a

f x d x f y dy    exists finitely or infinitely, where  g  

is the Lebesgue Stieltjes measure generated by g and  is the generalised inverse 

of g as defined in Definition 38. 

(ii) Suppose the interval I is bounded from above and g is left continuous.  Then 

                     
( )

[ , ) ( )
( ) ( ) ( ( ))

g b

g
a b g a

f x d x f y dy =  ,  

whenever
( )

[ , ) ( )
( ) ( )  or ( ( ))

g b

g
a b g a

f x d x f y dy    exists finitely or infinitely, where   

is the Lebesgue Stieltjes measure generated by g and  is the generalised 

inverse of g as defined in Definition 38. 

Proof.   Immediate from Theorem 44. 

 

The next result is a more familiar version of the change of variable theorem. 

g
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Theorem 46.  Suppose I is an open interval bounded from below or bounded 

from above and :g I → is a continuous increasing function.  Let :f →  be a 

Borel function. Then for ,a b I  with a b  , 

                      
( )

[ , ] ( )
( ) ( ) ( )

g b

g
a b g a

f g x d x f y dy =  , 

whenever 
( )

[ , ] ( )
( ) ( ) or ( )

g b

g
a b g a

f g x d x f y dy  exists finitely or infinitely, where  g  

is the Lebesgue Stieltjes measure generated by g. 

If g is differentiable everywhere or is absolutely continuous, then 

                    
( )

[ , ] ( )
( ) ( ) ( ) ( )

g b

a b g a
f g x g x d x f y dy =   

Proof.  If the interval I is bounded below, by Theorem 45 part (i), we have 

                
( )

( , ] ( )
( ) ( ) ( ( ))

g b

g
a b g a

f g x d x f g y dy =  . 

As g is continuous, 
[ , ] ( , ]

( ) ( ) ( ) ( )g g
a b a b

f g x d x f g x d x =  . 

Since g is continuous, by Proposition 39, ( ( ))g y y = , for all y in J so that 
( ) ( )

( ) ( )
( ( )) ( )

g b g b

g a g a
f g y dy f y dy =  .   

If the interval I is bounded above, by Theorem 45 part (ii), we have 

                  
( )

[ , ) ( )
( ) ( ( ))

g b

g
a b g a

f g x d f g y dy =  . 

Since g is continuous, by Proposition 40, ( ( ))g y y =  and so 

                    
( )

[ , ] [ , ) ( )
( ) ( ) ( )

g b

g g
a b a b g a

f g x d f g x d f y dy = =   . 

If g is differentiable everywhere, then g is a Lusin function by Theorem 12 of 

Absolutely Continuous Function on Arbitrary Domain and Function of Bounded 

Variation.  By Theorem 15 of Absolutely Continuous Function on Arbitrary 

Domain and Function of Bounded Variation, g is absolutely continuous on the 

interval [a, b].  By Theorem 26, if g is absolutely continuous, then 

                  
[ , ] [ , ]

( ) ( ) ( ) ( )g
a b a b

f g x d x f g x g x dx =  . 

Hence, 
( )

[ , ] ( )
( ) ( ) ( )

g b

a b g a
f g x g x dx f y dy =  . 
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The next result, with continuity condition on increasing g and differentiability 

condition on an increasing function  on the codomain of g, has a short and 

elegant proof.                             

Theorem 47.  Suppose I is an open interval bounded from below and is 

a continuous increasing function.  Let : →  be an increasing function, 

which is differentiable everywhere on .   Let :f I →  be a Borel function. 

Then for any Borel set B in B(I),  

                        ( )g g
B B

fd f g d  =  , 

whenever any side of the equality exists finitely or infinitely, 

Proof. 

For any interval ( , )a b  with ,a b I  and a < b, since g  and   are continuous, 

by Theorem 7, (( , )) ( (( , ))) ( ( (( , ))) ( (( , )))g a b m g a b m g a b g a b    = = = .   Since   is 

bounded on ([ , ])g a b  and   is differentiable everywhere on ([ , ])g a b , by Theorem 

15 of Absolutely Continuous Function on Arbitrary Domain and Function of 

Bounded Variation,  
(( , ))

( (( , )))
g a b

g a b dm =  , where m is the Lebesgue measure 

on .   Note that   is Borel.  Since g is continuous and increasing, by Theorem 

46,  

                               
(( , )) ( , )

g
g a b a b

dm g d   =  .   

It follows that  
( , )

(( , ))g g
a b

a b g d  =   .  Therefore, ( )g g
E

E g d  =   for 

any Borel set E in B(I).   Hence, for a Borel function  :f I →  , by Proposition 

28 of Introduction to Measure Theory, 

                               ( )g g
B B

f d f g d  =   .  

This completes the proof of Theorem 47.  

 

We now consider the Lebesgue Stieltjes measure generated by a composition of 

two increasing functions, with or without continuity condition.  We have a 

result, which is similar to Theorem 44.   

Theorem 48.  Suppose I is an open interval and is an increasing 

function.  Let J be the smallest interval containing the range of g.  Let : J →

:g I →

:g I →
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be an increasing function.  Let  be a non-negative Borel function. 

Let a, b  I with a < b. 

(i) Suppose the interval I is bounded from below, g and  are right continuous.  

Then  
( , ] ( ( ), ( )]

g
a b g a g b

f d f d   =   ,   

where  g   and   are the respective Lebesgue Stieltjes measure generated by 

 and g   respectively and  is the generalised inverse of g as defined in 

Definition 38. 

(ii) Suppose the interval I is bounded from above, g and  are left continuous.  

Then  
[ , ) [ ( ), ( ))

g
a b g a g b

f d f d   =  , 

where    and  are the respective Lebesgue Stieltjes measure generated by 

 respectively and  is the generalised inverse of g as defined in 

Definition 38. 

Proof. 

We shall prove only part (i). The proof of part (ii) is analogous. 

We shall prove the theorem for the case when f is the characteristic function of a 

half-open and half-closed interval,  in I , where  . 

Let   . 

If , then ( , ]
( , ] ( , ]

0g g
a b a b

f d d     = =  . 

By Proposition 43,  if, and only if,  .  Therefore, 

             ( , ]
( ( ), ( )] ( ( ), ( )]

0
g a g b g a g b

f d d       = =   , since .    

Hence the theorem is true for these characteristic functions.  

Suppose now .  Then , where  

and .  Therefore,  

            ( , ] ( , ]
( , ] ( , ] ( , ]

( ( )) ( ( ))g g s t g
a b a b a b

f d d d g t g s          = = = −   , 

since g  is right continuous. 

Again, by Proposition 43,  if, and only if, , so that  

: [0, )f I → 

g 

 and g 

( , ]   

( , ]f  =

( , ] ( , ]a b   =

( ) ( )g a y g b  ( )a y b 

( , ] ( , ]a b   =

( , ] ( , ]a b    ( , ] ( , ] ( , ]a b s t   = max{ , }s a=

min{ , }t b=

( ) ( )g a y g b  ( )a y b 
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      ( , ] ( ( ), ( )] ( ( ), ( )]
( ( ), ( )] ( ( ), ( )] ( ( ), ( )]

g a g b g g
g a g b g a g b g a g b

f d d d             = =    

                        ( ( ), ( )]
( ( ), ( )]

g s g t
g a g b

d  =  , since g is increasing, 

                        ( ( )) ( ( ))g t g s = − , as  is right continuous.  

It follows that ( , ] ( , ]
( , ] ( ( ), ( )]

g
a b g a g b

d d         =  .    

Hence, the theorem is true for characteristic functions of a half open and half-

closed interval,  in I.  It follows that
( , ] ( ( ), ( )]

B g B
a b g a g b

d d     =  for any 

Borel set B in B(I). 

Now we define two positive Radon measures as follows. 

For any Borel set in B(I), let 

      1
( , ]

( ) B g
a b

B d   =   and 2
( ( ), ( )]

( ) B
g a g b

B d    =  . 

Then  are positive Borel measures on B(I), and since I is an open 

interval, by Corollary 4 of Product Measure and Fubbini’s Theorem, .   

By Theorem 3,  are Radon measures. 

Therefore, the theorem holds when f is the characteristic function of a Borel set. 

It follows that the theorem holds for any simple Borel function.  By Theorem 16 

of Introduction to Measure Theory, there exists a monotone sequence of simple 

Borel function  converging to f pointwise.  Therefore, by the Lebesgue 

Monotone Convergence Theorem (see Theorem 23 of Introduction to Measure 

Theory),  
( , ] ( , ]

( ) ( ) ( ) ( )n g g
a b a b

s x d x f x d x  →   and

( ( ), ( )] ( ( ),( )]
( ) ( ) ( ) ( )n

g a g b g a b
s v x d x f v x d x  →  . 

Therefore, 
( , ] ( ( ),( )]

( ) ( ) ( ) ( )g
a b g a b

f x d x f v x d x  =  .  In particular, it follows that 

( , ]
( ) ( )g

a b
f x d x   if, and only if, 

( ( ),( )]
( ) ( )

g a b
f v x d x   . 

 

Corollary 49.  Suppose I is an open interval and is an increasing 

function.  Let J be the smallest interval containing the range of g.  Let 

be an increasing function.  Let :f I →  be a Borel function. Let a, b  I with a 

< b. 

( , ] 

1 2 and  

1 2 =

1 2 and  

{ }ns

:g I →

: J →
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(i) Suppose the interval I is bounded from below, g and  are right continuous.  

 Then 
( , ] ( ( ), ( )]

g
a b g a g b

f d f d   =  .   

(ii) Suppose the interval I is bounded from above, g and  are left continuous.  

Then  
[ , ) [ ( ), ( ))

g
a b g a g b

f d f d   =  , 

Proof.  This follows from Theorem 48. 

 

Corollary 50.  Suppose I is an open interval and is a continuous 

increasing function.  Let J be the smallest interval containing the range of g.  

Let : J → be an increasing function.  Let :f →  or :f J →   be a Borel 

function. Let  with . 

(i) Suppose the interval I is bounded from below and  is right continuous. Then 

                        
( , ] ( ( ), ( )]

g
a b g a g b

f gd fd  =  .   

(ii) Suppose the interval I is bounded from above and  is left continuous. Then 

                         
[ , ) [ ( ), ( ))

g
a b g a g b

f g d f d  =  . 

Proof. 

We prove part (i) only. Part (ii) is similarly proven.  

By Corollary 49, 
( , ] ( ( ), ( )]

g
a b g a g b

f gd f g vd  =  .  Since g is continuous, 

( ( ), ( )] ( ( ), ( )]g a g b g a g b
f g vd fd  =  .  Therefore, 

( , ] ( ( ), ( )]
g

a b g a g b
f gd fd  =  . 

 

We now introduce the idea of using a measurable function and a measure space 

to define a measure by taking the preimage of a measurable set. 

 

Definition 51. 

Suppose (X, M,  ) is a measure space.  That is, M is a -algebra of subsets of X 

and :  M → [0, ∞] is a positive measure.   Suppose :f X →  is a M -

measurable function.  Define a collection S of subsets of  by 

:g I →

,a b I a b
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                                  S = { 1: ( )E f E−  M}. 

Plainly, S is a -algebra and contains every Borel set of . Define the measure  
1f −  on S by 1 1( ) ( ( ))f E f E − −= .  Obviously, every Borel set of is S -

measurable or 1f − -measurable, if we specify the measure  M → [0, ∞]. on 

X. 

Theorem 52.   Suppose :f X →  is a M-measurable function, where (X, M,  ) 

is a measure space. Suppose :g →  is a Borel measurable function on . 

Then ( )1

X
gd f g fd − =  , whenever any side of the equality exists. 

Moreover, if B is a Borel set in , then ( ) 1

1

( )B f B
gd f g fd 

−

− =    

Proof.   It is enough to prove the theorem when g is a non-negative Borel 

measurable function.  We note that for any Borel set E in , 

               ( ) ( ) 1

1 1

( )
( )E Ef EX X

d f f E d f d      −

− −= = =    . 

It follows that the theorem is true for any simple Borel measurable function.  

Since g is a non-negative function, there exists a monotone sequence of Borel 

simple function converging pointwise to g. Therefore, by the Lebesgue 

Monotone Convergence Theorem, the theorem holds for a non-negative Borel 

measurable function.  In general, by writing g g g+ −= −  , we see that whenever  

( ) ( )1 1g d f g d f + − + −−   is not of the form ( ) ( )+ − + , the right hand side   

X X
g fd g fd + −−   is also not of the form ( ) ( )+ − +  and vice versa. 

Therefore, 

               ( ) ( ) ( )1 1

B B
B X

gd f gd f g f d    − −= =    

                                ( )( ) ( )( )1 1( ) ( )
B f BX X f B

g f f d g f d g fd    − −
= = =   .                        

We shall apply Theorem 52 to the next result. 

Theorem 53. Suppose I is an open interval and :g I →  is an increasing 

function.   Let J be the smallest interval containing the range of g.  Let : J →  

be an increasing function and :f I → be a Borel function.  Let B be any Borel 

set in I. 

(i) Suppose I is bounded from below and  is right continuous.  Then 

                                       
1 ( )

g
B B

fd f vd 


 
−

=  . 

:
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In particular, for a, b  I and a < b, 
( , ] ( ( ), ( )]

g
a b g a g b

fd f vd  
+ +

=  . 

(ii) Suppose I is bounded from above and  is left continuous. Then 

                                       
1 ( )

g
B B

fd f d 


  
−

=  . 

In particular, for a, b  I and a < b, 
[ , ) [ ( ), ( ))

g
a b g a g b

fd f d   
− −

=  . 

Proof.   

We shall prove only part (i).  Part (ii) is analogously proven. 

Let a, b  I and a < b.   Then 

( ) ( )(( , ]) ( ) ( ) ( ( )) ( ( ))g a b g b g a g b g a    + ++ +
= − = − , 

                                              since    is right continuous, 

              ( ) ( )1( ( ), ( )] (( , ])g a g b a b   
+

−

+= = , by Proposition 43.         

Since half-open and half-closed intervals generate the Borel algebra,  

                                      , 

for all Borel set E in B(I).   Therefore, by Theorem 52, for any Borel set B in 

B(I),  

                    
1 ( )

g
B B

fd f vd 


 
−

=  . 

Hence, for a, b  I and a < b, 
1( , ] (( , ]) ( ( ), ( )]

g
a b a b g a g b

fd f vd f vd  


  
−

+ +

= =   . 

 

However, for strictly increasing function g and any increasing function  , the 

conclusion of Theorem 53 holds without any continuity condition. 

Theorem 54.   Suppose I is an open interval and is a strictly increasing 

function.  Let : →  be an increasing function and :f I → be a Borel 

function.  Let B be any Borel set in B(I).  

(i) If the interval I is bounded from below, 

                             
1 ( )

g
B B

fd f vd 


 
−

=  , 

( )( )1( )g E E    −=

:g I →
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whenever any side of the equality exists finitely or infinitely.  In particular, for 

a, b  I and a < b, 
( , ] ( ( ), ( )]

g
a b g a g b

fd f vd  
+ +

=  .  Moreover, if g is a strictly 

increasing continuous function, then 
( )

g
B g B

fd f vd  =  . 

(ii) If the interval I is bounded from above, 

                             
1 ( )

g
B B

fd f d 


  
−

=   

whenever any side of the equality exists finitely or infinitely.  In particular, for 

a, b  I and a < b, 
[ , ) [ ( ), ( ))

g
a b g a g b

fd f d   
− −

=  .  Moreover, if g is a strictly 

increasing continuous function, then for any Borel set in B(I), 

( )
g

B g B
fd f d   =  . 

Proof.  We shall prove only part (i).  Part (ii) is similarly proven.  

Let a, b  I and a < b.  Since g is strictly increasing and  is increasing,  

          ( ) ( ) ( )( , ] ( ) ( ) ( ( )) ( ( ))g a b g b g a g b g a    + + + ++ +
= − = −  , 

                                                          since g is strictly increasing,  

                           ( ) ( )1( ( ), ( )] (( , ])g a g b a b    −

+ += = , by Proposition 43.                            

Since half-open and half-closed intervals generate the Borel algebra,  

                                      , 

for all Borel set E in B(I).   Therefore, by Theorem 52, for any Borel set B in 

B(I),  

                                   ( ) 1

1

( )
g

B B B
fd fd v f d  


   

−

−= =   .        

In particular,  
1( , ] (( , ]) ( ( ), ( )]

g
a b a b g a g b

fd f vd f vd  


  
−

+ +

= =   .  

If g is a continuous, strictly increasing function, then  is both left and right 

inverse function of g and so 1( ) ( )B g B − = . 

          

Theorem 55.   Suppose I is an open interval and is a strictly increasing 

continuous function.  Let  be an increasing function.   Let J be the 

smallest interval containing the range of g.  Let :f → or :f J →  be a Borel 

function. Let a, b  I with a < b. If the interval I is bounded from below, then                                  

( )( )1( )g E E    −=

:g I →

: →
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( , ] ( ( ), ( )]
g

a b g a g b
f gd fd  =  .  If the interval I is bounded from above, then                                  

[ , ) [ ( ), ( ))
g

a b g a g b
f gd fd  =  .   

Moreover,  
[ , ] [ ( ), ( )]

g
a b g a g b

f gd fd  =  . 

Proof.  Suppose the interval I is bounded from below. 

By Theorem 54 part (i),    

    ( ) ( )
( , ] ( ( ), ( )] ( ( ), ( )] ( ( ), ( )]

g
a b g a g b g a g b g a g b

f gd f g d f g d fd        = = =    , 

since g is continuous so that ( )( ) ( ( ))g y g y y = =  for all y in J.   Note that 

  ( ) ( )( )( ( )) ( ( )) ( ) ( )gf g a a f g a g a g a  
+ −

= −   

                      ( ) ( )( )( ( )) ( ) ( )f g a g a g a + −= − ,  

                                             since g is strictly increasing and continuous. 

Now   ( )( ( )) ( ) ( ( )) ( ( )) ( ( ))f g a g a f g a g a g a  + −= −  and so

   ( ( )) ( ( )) ( )gf g a a f g a g a  = .  Hence adding the end points to the integral 

gives 
[ , ] [ ( ), ( )]

g
a b g a g b

f gd fd  =  . 

If the interval I is bounded from above, similar conclusion is reached by using 

Theorem 54 part (ii). 

Remark. 

If the interval I is both bounded above and bounded below, then the conclusion 

of Theorem 55 holds when g is just only continuous and increasing.  For this 

relaxation of strictly increasing condition, we shall examine the contribution of 

the points of discontinuity in the domain of the function , where its inverse 

image under g contains more than one point.  See Corollary 61 below. 

 

We now discuss a situation when we can dispense with the continuity condition 

of g.  

The result of Theorem 44 is also true when the integrand function f is increasing 

with no continuity condition. 

We shall need the following properties of the generalized inverse function of g. 
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Proposition 56.  Suppose I is an open interval bounded below and  is 

an increasing function.  Let J be the smallest interval containing the range of g.  

Let : J →  be the generalised left continuous inverse of g as defined in 

Definition 38.   

Suppose , I    are such that   .  Then  

(i)  if, and only if, ( ) ( )g y g + +  ;    

(ii) ( ) ( )v y y g −   ,  ( ) ( )y g v y −   ; 

(iii) ( ) ( )v y y g −   ,  ( ) ( )y g v y −   ; 

(iv)  ( ) ( ) ( )v y g y g   + −     ,  ( ) ( ) ( )g y g v y   + −     ; 

(v)  ( ) ( ) ( )v y g y g   − −     ,  ( ) ( ) ( )g y g v y   − −     ; 

(vi)  ( ) ( ) ( )v y g y g   − +     ,  ( ) ( ) ( )g y g v y   − +     . 

(vii)  If ( )v y z= , then ( ) ( )g z y g z− +  .   

Proof. 

(i) This follows from Proposition 43. 

(ii) Suppose ( )y g − .  If ( )y = , then for all z   , ( )g z y .  Hence, 

( )g y−   contradicting ( )y g −  and so ( )y  cannot be equal to   .  If ( )y 

, then ( ) ( )y g g −  , contradicting ( )y g − .  Therefore,  ( ) ( )y g y  −   . 

Suppose ( )y  .  Then by definition of ,  ( )y g  .  By the proof of 

Proposition 39 part (iv), for  ( ) ( )g y g −   , ( )v y = , if  ( ) ( )g g −  .  

Therefore,  ( )y g − .  Hence, ( ) ( )v y y g −   . 

(iii).  Part (iii) is equivalent to Part (ii). 

(iv), (v), (vi). 

Parts (iv), (v) and (vi) follow from parts (i), (ii) and (iii).  

(vii).  If ( )v y z= , then by definition of , ( )y g x for all x z .  Hence, ( )y g z+ . 

For ( )x v y z = , ( )g x y for if on the contrary ( )g x y , then ( )x v y , 

contradicting ( )x v y z = .  It follows that ( )g z y−  .  

 

:g I →

( )y   
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Theorem 57.  Suppose I is an open interval bounded from below and is 

an increasing function.  Let  be a non-negative increasing function. 

Then for  with  , 

                     
1[ , ] ([ , ]) [ ( ), )]

( ) ( )g
a b a b g a g b

f d f y dy f y dy


  
−

− +

= =   , 

where   is the Lebesgue Stieltjes measure generated by g and  is the 

generalised inverse of g as defined in Definition 38. 

Proof.   

Since f is a Borel function, there exists a monotone increasing sequence of (non-

negative) Borel measurable simple functions ( )ns  converging pointwise to f.  

(See Theorem 16, Introduction To Measure Theory.)  

For simplicity we take [ , ]I a b=  and assumed that ( ) ( )g a g a− = .   

The sequence is constructed as follows as in Introduction To Measure Theory. 

For each integer n ≥ 1, divide the interval [0, n] into 2nn  sub-intervals of 

length 
1

2n
. 

Let 1

,

1
,

2 2
n i n n

i i
E f −  −  

=  
  

 ,  1,2, , 2ni n=  ,  ( )1 [ , )nF f n−=   and  

,

2

1

1

2

n

n i n

n

n E Fn
i

i
s n 

=

−
= +  . 

Since f is increasing, the sets ,n iE  are bounded intervals and nF  is an interval, 

which may not be bounded. 

Note that , 1, 1, 1n i n j n jE E E+ + +=   , where 
1

1 1

2 2n n

j i
+

− −
=  or 2 1j i= − .   On the set ,n iE , 

1( )ns x+  takes on the value 
1

1 1

2 2n n

j i
+

− −
=  when x is in 1,n jE +  and  the value 

1

1

2 2n n

j i
+

−
  

when x is in 1, 1n jE + + .   Observe also that   

            ( ) ( )  )( )  )( )1 1 1 1

1[ , ) [ 1, ) , 1 , 1n nF f n f n f n n F f n n− − − −

+=  = +   + =  +  

and  )( )  1 1 1

1,, 1 : 2 1 to ( 1)2n n

n if n n E i n n− + +

++ = = + + . 

:g I →

: [0, )f I → 

,a b I a b

g
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Thus, on the set 1nF + , 1( )ns x+  takes on the value n +1 when x is in 1,n jE +  and on the 

set  )( )1 , 1f n n− + , 1( )ns x+ takes on values n , when ( )ns x  is defined and is equal 

to n. Therefore, 1n ns s+   . 

Since ( )f x    , take an integer N such that N > f (x), then for all n ≥ N, 

1( )ns x N+   as ( ) 0
nF x = and so the sequence is pointwise convergence.   

Since f is increasing, we may modify the sequence by dropping the final term. 

We redefine 
,

2

1

1

2

n

n i

n

n En
i

i
s 

=

−
=   Thus, 

                                  ( )
2

,

1

1

2

nn

n g g n inI
i

i
s d E 

=

−
= . --------------------------------- (1) 

Note that each ,n iE  is an interval.   We examine the intervals with respect to the 

Lebesgue Stieltjes measure.  If , [ , ) or [ , ] or ( , ] or ( , )n iE c d c d c d c d=  , then  

               ( ), ( ) ( ) or ( ) ( ) or ( ) ( ) or ( ) ( )g n iE g d g c g d g c g d g c g d g c − − + − + + − += − − − −  

respectively.  It follows that                

( )  )( ) ( ( ), ( ), ( )  or ( ), ( )  g n iE m g c g d m g c g d − − − +=
 

               ( ( ) ( )( )or ( ), ( ) or ( ), ( )m g c g d m g c g d+ + + − . 

Let        , ( ), ( )  or ( ), ( )  or ( ), ( ) or ( ), ( )g

n iE g c g d g c g d g c g d g c g d− − − + + + + −= , 

respectively.   We note that by Proposition 56, 

( )1 ( , ] ( ( ), ( )]c d g c g d −

+ += , ( ) ( )1( ), ( ) ( , ) ( ( ), ( )]g c g d c d g c g d −

+ − + −  , 

( ) ( )  1( ), ( ) [ , ) ( ), ( )g c g d c d g c g d −

− − − −  , (   1( ), ( ) ([ , ]) ( ), ( )g c g d c d g c g d −

− + − +  . 

Therefore, if , [ , ]g

n iE c d= , then 1

, ,( , ) ( ) [ , ] g

n i n ic d E c d E −  = .    

Thus,  ( )( )1

, ,( )g

n i n im E m E −= , if  ,n iE  is not a singleton set.  If  ,n iE  is a singleton 

set, say {c} with c  I.  Then ( ){ } ( ) ( )gd c g c g c
−+= −  and , [ ( ), ( )]g

n iE g c g c− += . 

By Proposition 56 part (vi) 1({ }) [ ( ), ( )]c g c g c −

− + .  On the other hand, if 

( ) ( )g c g c− + , then for all ( ( ), ( )]y g c g c− + , ( )v y c=  . Hence,  



90 

 

                                    
1( ( ), ( )] ({ }) [ ( ), ( )]g c g c c g c g c −

− + − +  . 

Therefore,  ( ) ( ) ( )1

, ,( ) ([ ( ), ( )]) ({ }) { }g

n i g g n im E m g c g c m v c c E −

− += = = = . 

It follows that ( ) ( )( )1

, ,g n i n iE m E  −= .  Therefore, taking I to be [a, b], we have                   

( ) ( )
2 2 2

1 1 1

, ,

1 1 1

1 1 1 1
( ) ,

2 2 2 2 2

n n nn n n

n g g n i n in n n n nI
i i i

i i i i i
s d E m E m f   − − −

= = =

  − − −  −  
= = =         
    

           ( )
( )

1

2 2
1

1
,1 1

2 2

1 1 1
,

2 2 2 2

n n

n n

n n

n n n n i iJ f vi i

i i i i
m f v dy

−

−

−  
 = =
  

 −  −  − 
= =  

   
   . 

Evidently, 
( )

1

2

1
,1

2 2

1

2

n

n n

n

n i iJ f vi

i
dy

− −  
 =
  

−
   tends to 

1 ( )
( )

v I
f v y dy

−  . 

Therefore, 
1[ , ] [ , ] [ ( ), ( )]

( ) ( )g
a b a b g a g b

f d f y dy f y dy


  
−

+

= =   . 

In general, if [ , ]a b I  and I is an open interval, then 

                 ( ) ( )
2 2

1

[ , ] , ,

1 1

1 1
[ , ] ( [ , ])

2 2

n nn n

n a b g g n i n in nI
i i

i i
s d E a b m E a b    −

= =

− −
=  =    

                   
2

1 1

1

1 1
, [ , ]

2 2 2

nn

n n n
i

i i i
m f a b − −

=

  −  −  
=         
  

                      
2

1 1 1

1

1 1
, ([ , ])

2 2 2

nn

n n n
i

i i i
m f a b − − −

=

  −  −  
=         
  

                       
( )

1
1

2

1 ([ , ])
,1

2 2

1

2

n

n n

n

n i i a bJ f vi

i
dy


  −

− −  
 =
  

−
=  . 

Note that 
( )

( ) ( )1 1 11

2

1 ([ , ]) ([ , ]) ([ , ]),1
2 2

1

2

n

n n

n

n i i a b a bJ J a bf vi

i
dy f v dy f v dy

  
  − − −− −  

 =
  

−
→ =    . It 

follows that 
1[ , ] ([ , ]) [ ( ), )]

( ) ( )g
a b a b g a g b

f d f y dy f y dy


  
−

− +

= =   . 

 

Instead of requiring the function g to be strictly increasing, we can impose some 

restrictive continuity condition so that the conclusion of Theorem 54 holds.  

This is just to make sure the limit of composition function behaves well.  
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Theorem 58.   Suppose I is an open interval bounded from below and 

is an increasing function.  Let J be the smallest interval containing g(I). Let 
1{ : ( ) contains more than one point.}G y J g y−=  .   Suppose : J →  is an increasing 

function with the property that  is right continuous at every point y in G.  Let 

:f I → be a Borel function.  Then for any Borel set B in B(I),  

                             
1 ( )

g
B B

fd f vd 


 
−

=  , 

whenever any side of the equality exists finitely or infinitely.  In particular, for 

a, b  I and a < b, 
( , ] ( ( ), ( )]

g
a b g a g b

fd f vd  
+ +

=  .  If [ , ]I a b=  with a < b, then 

[ , ] [ ( ), ( )]
g

a b g a g b
fd f vd  =  . 

Proof.  

The key to the proof is a proper handling of the limit of composition functions.  

Note that the collection 1{ ({ }) : }g y y G−   is a collection of disjoint intervals. 

Since any collection of disjoint non-trivial intervals is countable, G is countable. 

Note that by associating each 1({ })g y−  with a rational number, we deduce that 

the collection of disjoint non-trivial intervals is countable.  Note that if 

 1({ }) :x g y y G−  , then for all z in I such that x < z, ( ) ( )g z g x , consequently 

( ) ( ) ( )
( )

( ) lim ( ) lim ( ) ( ( ))
z x y g x

g x g z y g x   
+

+ ++
= = = .  If   1({ }) :x g y y G−  , then 

there exists 0x I  such that 0x x  and 0( ) ( )g x g x= .  If 0x x , then 

( ) ( )( ) ( ) ( ( )) ( ( )) ( ( ))g x g x g x g x g x    + + ++
= = = = , since   is right continuous at 

g(x).  If x is such that for all z > x,  ( ) ( )g z g x , i.e., ( )1( ( ))x g g x−   

( ) ( ) ( ( ))g x g x + ++
= .  This means if 1({ }) ( , ) or ( , ] or [ , ] or ( , )g y c d c d c d c d− = ,  

( ) ( ) ( ( ))g z g z + ++
= for ( , )z c d .  If 1({ })c g y− , then ( ) ( ) ( ( ))g z g z + ++

= .  If  

1({ })d g y− , then for all z d , ( ) ( )g z g d  and so ( ) ( ) ( ( ))g z g z + ++
= .  It 

follows that for all x I  , ( ) ( ) ( ( ))g x g x + ++
= .  Therefore, for any , I   ,  

with    , 

               ( ) ( ) ( )( , ] ( ) ( ) ( ( )) ( ( ))g g g g g          + + + ++ +
= − = −    

                                ( ) ( )1( ( ), ( )] ( , ]g g       −

+ += = . 

Since half-open and half-closed intervals of the form ( , ]   generates the Borel 

-algebra on I, for all Borel set, B, in I, ( ) 1( )g B B    −= .  Therefore, by 

Theorem 52, 

:g I →



92 

 

                  ( ) 1

1

( )
g

B B B
fd fd f vd  


   

−

−= =   . 

If the interval I = [a, b], with a < b, then [ ( ), ( )]J g a g b=  and 

( )1 [ , ] [ ( ), ( )]a b g a g b − = .  This is because by Proposition 56, 

( )1 ( , ] ( ( ), ( )] ( ( ), ( )]a b g a g b g a g b −

+ + += =  and as ( ( ))v g a a= and

 ( ( )) inf : ( ) ( )v g a z g z g a a+ +=  = , ( )1 [ , ] [ ( ), ( )]a b g a g b − = .  Thus, under the 

condition that [ , ]I a b=  and [ ( ), ( )]J g a g b= , 
[ , ] [ ( ), ( )]

g
a b g a g b

fd f vd  =  . This 

completes the proof of Theorem 58. 

 

In general, if we relax the condition of right continuity on the set G, we may 

obtain a sort of change of variable with a correction term coming from the set 

G.  The correction term is a contribution from the discontinuity of the function  

in the set G. 

Now we state the corresponding result to Theorem 58 using left continuity. 

Theorem 59.   Suppose I is an open interval bounded from above and 

is an increasing function.  Let J be the smallest interval containing g(I). Let 
1{ : ( ) contains more than one point.}G y J g y−=  .   Suppose : J →  is an increasing 

function with the property that  is left continuous at every point y in G.  Let 

:f I → be a Borel function.  Then for any Borel set B in B(I),  

                             
1 ( )

g
B B

fd f d 


  
−

=  , 

whenever any side of the equality exists finitely or infinitely.  In particular, for 

a, b  I and a < b, 
[ , ) [ ( ), ( ))

g
a b g a g b

fd f d   
− −

=  .  If [ , ]I a b=  with a < b, then 

[ , ] [ ( ), ( )]
g

a b g a g b
fd f d   =  . 

 

The proof of Theorem 59 is similar to the proof of Theorem 58 and is omitted. 

We now discuss how we can dispense with the right continuity of the function  

on the set G in Theorem 58.  We can make use of the Saltus function of  to 

write it as the sum of an increasing continuous function and an increasing Saltus 

function. We can further write the Saltus function into a sum of an increasing 

right continuous and an increasing left continuous function. We can then apply 

the previous theorems to each of the functions.  For now, we shall use this idea 

on the set G. 

:g I →
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Suppose I is bounded from above and below. Suppose :g I →  is an increasing 

function.  Let 1{ : ( ) contains more than one point.}G y J g y−=  .  Let J be the smallest 

interval containing the range of g.  Suppose : J →  is an increasing bounded 

function.  

We now define the left and right jump function at the points of G as follows.  

For simplicity we let [ , ]I a b=   with a < b and so the range of g is the closed 

interval [ ( ), ( )]g a g b .  

For each y in G, let 
[ , ( )]( ( ) ( ))y

ls y g by y   −= −  .  This gives the value of the left 

jump at y for all x J  and x y .  Define y

ls ls

y G




 = .   Note that since   is 

increasing on [ ( ), ( )]J g a g b=  and each term ( ) ( )y y −− is non-negative,  

( ( ) ( ))
y G

y y −


−  is non negative and is less than the total Saltus of , which is 

finite. Therefore, ( ( ) ( ))
y G

y y −


−  is well defined and so ls  is uniformly 

convergent.  Plainly, it is an increasing function and right continuous. Now, 

define for each y in G, 
( , ( )]( ( ) ( ))y

rs y g by y   += −  and define y

rs rs

y G




 = .  Note that 

( , ( )]( ( ) ( ))y

rs y g by y   += − gives the value of the right jump at y after y. Obviously, 

it is an increasing function. Note that if x G  , then ( ) y

rs rs

y x

x 


 =  and obviously, 

lim ( ) ( )rs rs
z x

z x = .  If x G , ( ) y

rs rs

y x

x 


 = , since at y in G, ( , ( )]( ) 0y g b y = .  Thus,

( )rs x is left continuous.  Observe that ls rs − −  is continuous at each y in G.   

Note that  

,

( , ( )]

,

( ( ) ( )),  if ,

( ) ( ) ( ( ) ( )) ( )
( ( ) ( )),  if 

y G y xy

rs rs y g b

y G y G

y G y x

y y x G

x x y y x
y y x G

 

   
 

+

 

+

  +

 

 − 


 = = − = 
− 




 


 and 

,

[ , ( )]

,

( ( ) ( )),  if ,

( ) ( ) ( ( ) ( )) ( )
( ( ) ( )),  if 

y G y xy

ls ls y g b

y G y G

y G y x

y y x G

x x y y x
y y x G

 

   
 

−

 

−

  −

 

 − 


 = = − = 
− 




 


. 

If x G , ( )
,

( ) ( ) ( ( ) ( ))rs rs

y G y x

x x y y +−
 

 = = − ,  

                ( )
,

( ) ( ) ( ( ) ( ))rs rs

y G y x

x x y y ++
 

 = = − , 
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                ( )
,

( ) ( ) ( ( ) ( ))ls ls

y G y x

x x y y −+
 

 = = −  and 

               ( )
,

( ) ( ) ( ( ) ( ))ls ls

y G y x

x x y y −−
 

 = = − . 

If y G , ( ) ( ) ( )( ) ( ) ( ) ( )ls rs ls rsy y y y − − = −  −   

                           
, ,

( ) ( ( ) ( )) ( ( ) ( ))
z G z y z G z y

y z z z z    + −

   

= − − − −   

                          
, ,

( ) ( ( ) ( )) ( ( ) ( ))
z G z y z G z y

y z z z z    − + −

   

= − − − −   

                              
,

( ) ( ( ) ( ))
z G z y

y z z  − + −

 

= − − , 

( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))ls rs ls rs rs

z G z y

y y y y y y z z    − − − −− −
 

− − = −  −  = − − −  

                          
, ,

( ) ( ( ) ( )) ( ( ) ( ))
z G z y z G z y

y z z z z    − + −

   

= − − − −   

                             
,

( ) ( ( ) ( ))
z G z y

y z z  − + −

 

= − − . 

Therefore, ( ) ( )( ) ( )ls rs ls rsy y 
−

− − = − − . 

If y G , ( ) ( ) ( )( ) ( ) ( ) ( )ls rs ls rsy y y y + + + +
− − = −  −   

                          ( )( ) ( ) ( )ls rsy y y+ +
= − −   

                          
, ,

( ) ( ( ) ( )) ( ( ) ( ))
z G z y z G z y

y z z z z    + − +

   

= − − − −   

                             
,

( ) ( ( ) ( ))
z G z y

y z z  − + −

 

= − − . 

Therefore, ( ) ( )( ) ( )ls rs ls rsy y 
+

− − = − − .   Hence, ls rs − −  is continuous 

at every point in G.  

Let  ls rs = − − .   Then   is continuous at every point in G.  We shall show 

that   is an increasing function.                

( ) ( )
, ,

, ,

( ( ) ( )) ( ( ) ( )),  if ,

( ) ( ) ( )
( ( ) ( )) ( ( ) ( )),  if 

z G z x z G z x

s ls rs

z G z x z G z x

z z z z x G

x x x
z z z z x G

   

   

− +

   

− +

   

 − + − 


 =  +  = 
− + − 
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,

,

( ( ) ( )) ( ) ( ),  if 

( ( ) ( )),  if 

z G z x

z G z x

z z x x x G

z z x G

   

 

+ − −

 

+ −

 

 − + − 


= 
− 






. 

Suppose x < y.  Then  

,

,

,

,

( ( ) ( )) ( ) ( ),  if , ,

( ( ) ( )),  if , ,

( ) ( )
( ( ) ( )) ( ) ( ),  if , ,

( ( ) ( )) ( ) ( ) ( ) ( ),  if ,

z G x z y

z G x z y

s s

z G x z y

z G x z y

z z y y y G x G

z z y G x G

y x
z z x x y G x G

z z y y x x y G x G

   

 

   

     

+ − −

  

+ −

  

+ − +

  

+ − − +

  

 − + −  

−  

 − =
− + −  

− + − + −  



















 . 

Since  is increasing, for y >x, 

,

,

,

,

( ( ) ( )) ( ) ( ), if , ,

( ( ) ( ))), if , ,

( ) ( )
( ( ) ( )) ( ) ( ) ( ) ( ), if , ,

( ( ) ( )) ( ) ( ),  if ,

z G x z y

z G x z y

z G x z y

z G x z y

z z y y y G x G

z z y G x G

y x
z z y y x x y G x G

z z x x y G x G

   

 

 
     

   

+ − −

  

+ −

  

+ − − +

  

+ − +

  

 − + −  



−  

−  
− + − + −  

− + −  
















      

                  ( ) ( )s sy x= − . 

This is just a consequence of the fact that  is increasing and so ( ) ( )y x −  is 

greater than the sum of all the saltus between x and y plus the right jump at x 

and the left jump at y.  Thus, rs ls s  = − − = −  is an increasing function, 

continuous at every point in G, ls  is right continuous at every point in G and  

rs  is left continuous at every point in G. 

We can now formulate our next result. 

Theorem 60.   Suppose [ , ]I a b= , with a < b, is a closed and bounded interval 

and is an increasing function.  Let [ ( ), ( )]J g a g b=  and 
1{ : ( ) contains more than one point.}G y J g y−=  .   Suppose : J →  is an increasing 

function.  Let :[ , ]f a b → be a Borel function.  Then                              

( ) ( )
[ , ] [ ( ), ( )]

( ( )) ( ) ( ) ( ( )) ( ) ( )g
a b g a g b

y G y G

fd f d f y y y f y y y         − +

 

= + − + −   . 

For any Borel set B in B([a,b]),       

:g I →
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 g
B

fd   

( ) ( )
1

1 1
( )

( ) ( )

( ( )) ( ) ( ) ( ( )) ( ) ( )
B

y G B y G B

f d f y y y f y y y


 

       
−

− −

 − +

   

= + − + −  . 

Moreover, 
[ ( ), ( )] [ ( ), ( )]g a g b g a g b

f d f d    =   and 
1 1( ) ( )B B

f d f d
 

   
− − =  . 

Proof. 

 
[ , ] [ , ] [ , ] [ , ] [ , ]ls rs ls rsg g g g g g g
a b a b a b a b a b

fd fd fd fd fd     + +   = = + +     . 

By Theorem 58, 
[ , ] [ ( ), ( )]

g
a b g a g b

fd f d   =  .  -------------------- (1)             

Since ls  is right continuous, by Theorem 58,  
[ , ] [ ( ), ( )]ls lsg
a b g a g b

fd f d   =  .  

Note that since  ls  is a constant function except for countable number of points 

in G,   

            
[ ( ), ( )] { }

( ( )) ({ })
ls ls lsg a g b y

y G y G

f d f d f v y y      

 

= =   . 

Now for each y in G, ( ) ( )({ }) ( ) ( )
ls ls lsy y y + −

=  −   

                                              ( ) ( )( ) ( )ls lsy y
−

=  −   

                                             
, ,

( ( ) ( )) ( ( ) ( )) ( ) ( )
z G z y z G z y

z z z z y y     − − −

   

= − − − = −  . 

Hence, ( )
[ ( ), ( )]

( ( )) ( ) ( )
lsg a g b

y G

f d f v y y y    −



= − . ------------------ (2) 

By Theorem 59, ( )
[ , ] [ ( ), ( )]

( ( )) { }
rs rs rsg

a b g a g b
y G

fd f d f y y      



= =  . 

Observe that for each y in G,  ( ) ( )({ }) ( ) ( )
rs rs rsy y y + −

=  −   

                                              ( ) ( )( ) ( )rs rsy y
+

=  −   

                                             
, ,

( ( ) ( )) ( ( ) ( )) ( ) ( )
z G z y z G z y

z z z z y y     + + +

   

= − − − = −  . 

Hence, ( )
[ , ]

( ( )) ( ) ( )
rs g

a b
y G

fd f y y y    +



= − . ---------------------- (3) 

Putting (1), (2) and (3) together we have that                 

( ) ( )
[ , ] [ ( ), ( )]

( ( )) ( ) ( ) ( ( )) ( ) ( )g
a b g a g b

y G y G

fd f d f y y y f y y y         − +

 

= + − + −   . 

In general, for a Borel set B in B([a,b]),       



97 

 

          
ls rs ls rsg g g g g g g

B B B B B
fd fd fd fd fd     + +   = = + +      

                       
1 1 1( ) ( ) ( )ls rsv B v B B

f d f d f d


     
− − −  = + +   , 

 by Theorem 58 and Theorem 59. 

The last statement is a consequence of Theorem 58 and Theorem 59. 

 

Corollary 61.   Suppose [ , ]I a b= , with a < b, is a closed and bounded interval, 

and is an increasing continuous function.  Let [ ( ), ( )]J g a g b=  and 

suppose : J →  is an increasing function. Let :f J →  be a Borel function.  

Then 
[ , ] [ ( ), ( )]

g
a b g a g b

f gd fd  =  . 

Proof. With the notation as in Theorem 60, by Theorem 60,  

( ) ( )
[ , ] [ ( ), ( )]

( ( ( ))) ( ) ( ) ( ( ( ))) ( ) ( )g
a b g a g b

y G y G

f gd f g d f g y y y f g y y y         − +

 

= + − + −  

( ) ( )
[ ( ), ( )]

( ) ( ) ( ) ( ) ( ) ( )
g a g b

y G y G

fd f y y y f y y y     − +

 

= + − + −  , since g is continuous, 

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]ls rsg a g b g a g b g a g b
fd fd fd    = + +    

[ ( ), ( )] [ ( ), ( )]ls rsg a g b g a g b
fd fd  + += =  . 

 

If  is an increasing function on a closed and bounded interval [c, d], then it is a 

function of bounded variation.  By Theorem 19,  can be decomposed as a sum 

of three functions, ac c s = + + , where ac  is an increasing absolutely 

continuous function with ac   =  almost everywhere, c  is a continuous 

increasing function with 0c
 = almost everywhere and s  is the Saltus function 

of .  Evidently, s  is an increasing singular function.  As explained in the 

proof of Theorem 19, ( ) sG x = −  is a continuous increasing function.  

Moreover, we note that  is increasing and bounded so that  is differentiable 

almost everywhere and   is finite and greater or equal to zero almost 

everywhere.  In particular   is Lebesgue integrable and we may define 

( )
x x

ac
c c

x dm G dm  = =  , where m is the Lebesgue measure. It follows that ac  is 

increasing.  Note that ac  is absolutely continuous.  Let c s ac = − − .  Then 

:g I →
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c  is continuous and in particular, 0c
 = almost everywhere.  Let c x y d   . 

Then   

         ( )( ) ( ) ( ) ( ) ( ) ( )c c ac acx y G x x G y y − = − − −  

                             ( ) ( ) ( ) ( )
y y

x x
G x G y dm G x G y H dm = − + = − +   

                            ( ) ( ) ( ) ( ) 0G x G y G y G x − + − =  ,  

by Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation.  Therefore, c  is an increasing function.  

Observe that if we define  and ls rs   for   with the set D of discontinuity of   

in place of G, as we have done in the construction preceding Theorem 60, we 

can show that s  as given in the proof of Theorem 18 is equal to + ls rs  . 

                         

We now make use of the decomposition of  into a sum of absolute continuous 

increasing function, a continuous increasing singular function and an increasing 

saltus function.  Using the same argument as in Theorem 60, we obtain: 

Theorem 62.   Suppose [ , ]I a b=  is a closed and bounded interval, with a < b 

and is an increasing function.  Let [ ( ), ( )]J g a g b=  and suppose : J →  

is an increasing function. Let { :  is discontinuous at }D y J y=   be the set of 

discontinuity of .  Let :[ , ]f a b → be a Borel function.  Then                              

( )
[ , ] [ ( ), ( )]

g
a b g a g b

fd f dy  =    

                     ( ) ( ) ( )
[ ( ), ( )]

( ( )) ( ) ( ) ( ( )) ( ) ( )
cg a g b

y D y D

f d f y y y f y y y        − +

 

+ + − + −  . 

For any Borel set B in B([a,b]),       

 ( )
1 ( )

g
B B

fd f dy


  
−

=    

( ) ( )
1

1 1
( )

( ) ( )

( ( )) ( ) ( ) ( ( )) ( ) ( )
cB

y D B y D B

f d f y y y f y y y


 

       
−

− −

 − +

   

+ + − + −  , 

where c  is the continuous increasing singular function in the decomposition, ac c s = + + .   

Moreover, ( ) ( )
[ ( ), ( )] [ ( ), ( )]g a g b g a g b

f dy f dy     =   , 

( ) ( )
[ ( ), ( )] [ ( ), ( )]c cg a g b g a g b

f d f d    =  , ( ) ( )
1 1( ) ( )B B

f dy f dy
 

   
− −

  =    and 

1 1( ) ( )c cB B
f d f d

 
   

− − =  . 

:g I →
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Proof.  Take a decomposition of    ,  ac c ls rs = + + + , where ac  is an 

absolutely continuous increasing function with ( ) ( )ac x x  =  almost everywhere 

on J, c  is a continuous increasing singular function, i.e., ( ) 0c x =  almost 

everywhere,   and ls rs   are defined as before with the set D of discontinuity in 

place of G.    Then 

   
[ , ] [ , ] ac c ls rsg g g g g
a b a b

fd fd  + + +=   

                   
[ , ] [ , ] [ , ] [ , ]ac c ls rsg g g g
a b a b a b a b

fd fd fd fd      = + + +    . 

By Theorem 58 and Theorem 59, 

[ , ]
g

a b
fd   

 
[ ( ), ( )] [ ( ), ( )] [ ( ), ( )] [ ( ), ( )]ac c ls rsg a g b g a g b g a g b g a g b

f d f d f d f d          = + + +     

( )
[ ( ), ( )] [ ( ), ( )] [ ( ), ( )] [ ( ), ( )]c ls rsg a g b g a g b g a g b g a g b

f dy f d f d f d         
=  + + +    , 

  since ac  is absolutely continuous and ac   =  almost everywhere, 

( )
[ ( ), ( )] [ ( ), ( )] cg a g b g a g b

f dy f d   
=  +   

        ( ) ( )( ( )) ( ) ( ) ( ( )) ( ) ( )
y D y D

f y y y f y y y     − +

 

+ − + −  , 

where the last two terms are derived as in the proof of Theorem 60. 

The last assertion follows from Theorem 58 and Theorem 59 as follows:  

For a Borel set B in I, 

 
ac c ls rsg g g g g

B B
fd fd  + + +=   

              
ac c ls rsg g g g

B B B B
fd fd fd fd      = + + +     

             
1 1 1 1( ) ( ) ( ) ( )ac c ls rsB B B B

f d f d f d f d
   

       
− − − −   = + + +    ,  

             
1 1( ) ( ) cB B

f dy f d
 

   
− − 

=  +            

                       ( ) ( )
1 1( ) ( )

( ( )) ( ) ( ) ( ( )) ( ) ( )
y D B y D B

f y y y f y y y
 

     
− −

− +

   

+ − + −  . 

The assertions in the last statement are a consequence of the continuity of 

 and ac c   and follows from Theorem 58 and Theorem 59. 



100 

 

 

June 2020 


