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Introduction.

Following a series of articles on the de La Vallée Poussin Decomposition, we
shall consider the Lebesgue Stieltjes measure generated by a function of
bounded variation g. We have similar decomposition involving the measure of
the image of the total variation function of g, the measure of the images under
the positive and negative variation functions of g and of course the Lebesgue
integral of the derived function of g. All Borel subsets are Lebesgue Stieltjes
measurable. Not all continuous image of a measurable set is measurable. As
the continuous image of a Borel set is measurable, we shall confine ourselves
mostly on Borel sets. We have, in the previous articles, described the measure
of a measurable set under the total variation function of the function of bounded
variation. The present article will give a better picture of the measure of the
Image of a measurable set under a function of bounded variation or its total
variation function or its positive variation function or its negative variation
function, albeit with some constraint that the measurable set be Borel. Lebesgue
Stieltjes integral is defined in the usual manner via Lebesgue Stieltjes measure.
We present a generalized version of integration by parts (with correction term)
for the Lebesgue Stieltjes integral for functions of bounded variation. We
present versions of change of variable for the Lebesgue Stieltjes integral when
the measure is generated by the composition of two increasing functions. Detail
and complete proofs are presented.

Lebesgue Stieltjes Measure

We shall introduce the Lebesgue Stieltjes measure in stages. We begin by
defining it for an increasing function and then proceed to define it for function
of bounded variation.

Definition
Suppose | is an open interval and g:1 — R is an increasing function. Let Q be
the family of all intervals (a, b), with a, b € I and a <b. Define

Q0 —[0,0)



by p((a,b))=g(b)-g(a) for (a,b)ex. Whena=b, (a, b) =, we define
p((ab))=p(d)=0=g(b)-g(a).

We define the Lebesgue Stieltjes outer measure generated by g on the collection
o(1) of all subsets of I, *: (1) —[0,] by

4, *(E) =inf {ip((an,bn)):an,bn ela <b,E gO(an,bn)}.

We define x4, *(2)=0.

We shall state some known results about the Lebesgue Stieltjes outer measure,

*

My *

Proposition 1. Suppose | is an open interval and g:1 — R is an increasing
function. Then g, * is a metric outer measure. That is to say, if E, F c | are

separated, i.e., d(E,F)=inf {[x-y|:xeE,yeF}>0, then

Hy *(EUF) =, *(E)+ 1, *(F).
Proof. Obviously, x#,*>0 and u,*(&)=0. If AcB,then u, *(A)<u,*(B).
This is obviously true if A= & or u,*(B)=«. Now we assume that A # & and

#,*(B) <. Forany &> 0, take a collection of {(a,,b,)}such that B c O(an,bn)

n=1

and ip((an,bn))<,ug*(3)+€. It follows that AgD(an,bn) so that

n=1
Hy *(A) < Z.O:p((an,bn)) < u,*(B)+&. Since gis arbitrarily chosen, we conclude
=1
that x4, *(A)< u,*(B).
We next show that x4, * is osub-additive. Let {A} be a countable collection of

non-empty subsets of I. Let A= O A, . Ifany one of u *(A,) is +oo, then we

n=1

have nothing to prove. We may thus assume that x,*(A,) <+ for all n. Take

coverings {(a;,b{)} such that A, g[j(a;,b;) and ip((a;,b;))<,ug*(ﬁ)+82_n .
k=1 k=1

Plainly, Agog(ak“,bk”). It follows that

=1k=1

n



WD p(@00) <Y (1, *(A)+627) =D 1, *(A) +5.

n=1 k=1 n=1

Hence, we conclude that x4, *(A) siyg *(A). Thus, u,* is an outer measure.

n=1

Next, we shall show that ., * is a metric outer measure. Take subset A, B in |
such that d(A,B) =inf {|x—y|:xe A,yeB}>0. Since g is increasing, for any open
interval (a,b) with a <b and for any partition a=a, <a <---<a, =b, we can
write

p((ab))=g()-g(a)= Zg(ak)— g(a,y) = Zp(akfl,ak) :

with |a, —a,,[|<d(AB), k=1,2,...,N. This means we can write (a,b) as a union
LNJ(akfl,ak)uU{ak} . It follows that (a,_,,a,) can only meet one of A or B but not
l;zth and ea(‘;l a, can only belong to one of A or B but not both.
For any given &> 0, we can choose a covering {(a,,b,)} such that
AUBC O(ak,bk) and ki:p((ak,bk)) <u,*(AUB)+¢. By the above deliberation

ka1 =

the covering splits into two coverings one for A and one for B. It follows that

1 *(A)+ 1, *(B) < p((a. b)) < 4, *(AUB) +2. As gis arbitrarily chosen, we
k=1

can conclude that s, *(A)+ u, *(B) < 4, *(AUB). It can be shown easily that

py *(AUB) < u *(A)+u, *(B). Hence, u, *(AUB) = p,*(A)+p,*(B). Therefore,

1, * is a metric outer measure.

Definition 2. Suppose | is an open interval and g:1 — R is an increasing
function. We say aset E c | is x,* measurable if itis x,* measurable in the
sense of Caratheodory. That is to say E is x,* measurable if

:ug *(F) zlug*(F mE)+/ug*(F _E) )
foranyset F c I.

Let &(I) be the Borel c-algebra generated by the open sets of I. (See
Introduction to Measure Theory). Members of 2(1) are called Borel sets.



It turns out that the restriction of ., * to &(1) is a Radon measure, i.e. itis a
positive measure, finite on compact set and is both inner and outer regular.

We recall the definition of a Radon measure.

Let X be a locally compact Hausdorff topological space. Suppose 7 is a o -

algebra of subsets of X, containing all the Borel sets of X and « is a positive
measure on 7.

wis said to be outer regular if for all E € 7,
p(E)=inf{xu(V):V oEandV isopen}.

4 is said to be inner regular if for all E € 7%, such that either E is open or
u(E) <o, u(E)=sup{u(K):K cE andK is compact} .

s said to be regular if it is both inner and outer regular.

Suppose &(X) is the o - algebra generated by the Borel sets of X and x : &(X) —

[0, +o0] is a positive measure. The positive measure 4 is said to be a Radon
measure if z is regular and is finite on compact subsets of X.

Recall the following theorem from Positive Borel Measure and Riesz
Representation Theorem.

Theorem 3. Let X be a locally compact Hausdorff topological space, in which
every open subset is o-compact. Let A be any positive Borel measure on X such
that A(K) < for any compact subset K in X. Then A is regular. Hence, Ais a
Radon measure on &(X).

(For a proof of this theorem, refer to Theorem 5 of Positive Borel Measure and
Riesz Representation Theorem.)

Note that any open interval in R is a locally compact Hausdorff space, in which
every open set is o-compact.

Theorem 4. Suppose | is an open interval and g:1 — R is an increasing
function. Every Borel set E e&(l) is x, * measurable.

Theorem 4 is a consequence of the fact that ., * is a metric outer measure.

[See Theorem 11.5, page 283 of Wheeden Zygmund, Measure and Integral, An
Introduction to Real Analysis.]



Theorem 5. Suppose | is an open interval and g:1 — R is an increasing
function. The restriction of ., * to &(I), 4, : &(I) = [0, oo] is a Radon measure.
Every Borel set in | is both inner and outer regular.

Moreover, for any open interval (a, b) c I,
#, ((@,0)) < p((a,b))=g(b)-g(a).

4, ([a.b])=g,(b)—g_(a) forall a, b e I with a <b, where g, (x) denotes the right
limit of g at x and g_(x) denotes the left limit of g at x. We also have that

#, ((b])=9.(0)-9,(@), 1, ((ab))=g (b)-g,(@)and x,({a})=9,(a)-g (a).
Furthermore, if g is bounded,

115 (1) =SUp(G(0) ~nf (g ()

Thus, u, is finite if, and only if, g is bounded. , is unique in the sense that if
there is a Radon measure x: 8(1) — [0, o] such that .((a,b])=g,(b)-g,(a),
then =, .

Proof.

Note that 4, * is a Borel outer measure by Theorem 4.

By definition, for any open interval (a, b) in I,
1, ((@,b))< p((a,b))=g(b)—g(a) <. Suppose K is a compact subset of I. Then

K is closed and bounded and there is a finite cover of K by open bounded
intervals in I. It follows that 4, *(K) is finite. Hence, as | is locally compact, by

Theorem 3, the restriction of x,*to &(1) is a Radon measure. Therefore, every
Borel set is inner and outer regular.

Suppose [a, b] < I. Since the interval | is open, there exists an integer M such
that [a,b] < (a—ﬁ,mﬁj. Therefore, for all integer n > M,

ug([a,b])gp((a—l,bJrlB: g(b+l)—g(a—lj.
n n n n

Letting n tends to infinity, we obtain x,([a,b])<g, (b)-g_(a).



Take any countable cover {(a,,b,)} of [a, b] by open intervals in I. Then
[a,b] < O(an,bn). Since Lj(an,bn) IS open, [a, b] is contained in a union of finite

number of these open intervals in the cover and so [a, b] is contained in a path

connected open interval in the union of these finite number of open intervals.

Hence, there exists an £ > 0 such that [a—&,b+¢] is contained in this open path

component and so [a-&,b+&] gO(an,bn). We claim that the set O[g(an), a(b,)]
n=1 n=1

covers (g(a—e),g(b+¢)). Take ye(g(a—e),g(b+¢)). Then since g is increasing,

there exists xe[a—¢,b+¢] such that ye[g (x),g,(x)]. As [a—g,b+g]g0(an,bn),

n=1

x e (a,,b,) for some integer k. Therefore, we have

9@)<g. (¥<y<g,(x)<g(b)

and so ye[g(a,). g(b)] and yeO[g(an),g(bn)]. Therefore,

i(g(bn)—man))=§m([g<an>,g(bn)])zm@[g(an),g(bn)]j

>m(g(a—¢),g(b+¢))=g(b+s)-g@a-s)=g,(b)-g_(a).

Hence, by definition of x,([a,b]), #,([a,b])>g,(b)-g_(a). It follows that
Hy([a,b])=9,(b)-9_(a).

If g is bounded, then using the fact that ., ([a,b]) = g, (b)-g_(a) for [a, b] c I, by
taking a sequence {a,} such that a, “vinf I and a sequence {b,} such that

b, /" sup!, we conclude by the continuity from below property of outer measure,
that

#y (1) =1im 1, ([0, 1) = lim (g, (b,) - 9_(2,))=sup(g (x)) ~inf (9 (x)) -
Observe that if a = b, from », ([a,b])=g,(b)-g_(a), We deduce that
#({a})=9.@-9 (a)-
Since 4, is a Borel measure, if a, b el with a <b, then

Hy((a,b]) = 1, ([a,b]) — 1, ({a}) = 9. (B) —9_(8) (9, () —9_(a)) = 9. (0) -9, (a)

and



Hq (@, b)) = 24, ((@,b]) — 14, ({b}) = 9, (0) 9. (@) — (9, (D) —g_(b)) = 9_(b) — 9, (a) -
Now the o-algebra generated by the half open intervals (a,b] in I is the Borel o~

algebra &(1). Note that « and , are both o-finite. Therefore, since the

collection of half open intervals (a,b] in | is a z-system, by Corollary 4 of
Product Measure and Fubini’s Theorem, = u,.

Theorem 6. Suppose | is an open interval and g:1 — R is an increasing
function. Forany set E c I, m*(g(E)) < », *(E), where m* denotes the

Lebesgue outer measure on R. Moreover, if E — | is such that g is continuous
at all points of E, thenm*(g(E)) = 1, *(E) .

Proof.

LetEcl. If u,*(E)=+c, then plainly m*(g(E)) < x, *(E) and we have nothing
to prove.

Now, we assume that u, *(E) <.

For a given arbitrary £> 0, take a covering {(a,,b,)} of E by open intervals in |

such that ip((an,bn)):Zw:(g(bn)—g(an))gyg*(E)+g. Since g is increasing,

n=1

Ulo(@).9(6,)]= 9(E) . Therefore,

n=1

m*(g(E))sm*[@[g(an),g(bn)]j

o0

<3 m([o(a,), ab,)]) =Y (9b,) - 9(a,)) < 1, *(E) +¢.

n=1 n=1

Since ¢is arbitrarily chosen, we conclude that m*(g(E)) < x4, *(E).

Suppose now g is continuous at all points of E. We shall show that
u, *(E)<m*(g(E)). If m*(g(E))=+x. Then we have nothing to show.

Now, assume that m*(g(E)) < +o.

Take an open interval U in R . Consider its preimage
F={xeE:g(x)eU}=g"(U)nE. We shall show that x *(F)<m@U). IfUis

unbounded, then we have nothing to show. We now assume that U is bounded
and U =(c,d). Let a=infF and b=supF so that F c[a,b]. Itis possible that



a=—oo and b=400. Forall xinF, g(x)e(c,d). Thus, g (b)<d and g, (a)>c.
As g is continuous at x in F, x4, *({x})=0. Therefore, if acF, u,*({a})=0 and
if beF, u,*({b}))=0. Hence,

Hy*(F) <1, *((@,b)) =9 (b)-g,(@) <d —c=mU) . ------------- *)
Since m*(g(E)) <+« for any fixed &> 0, we can cover g(E) by a countable

collection of open intervals {Uj} such that g(E)gOUj and
j=1

> mU;)<m*(g(E))+¢ .

j=1

For each integer j> 1, let F, ={x<E:g(x)eU;}=g(U;)nE. Then by (*), we

have, since E < JF;,

% (E) < Yy *(F) < X mU ) <m(g(E) +2

Thus, as ¢is arbitrarily small, we conclude that x4, *(E) <m*(g(E)). Therefore,
if g is continuous at every point of E, then x,*(E)=m*(g(E)).

Let I be an open interval. Denote BV (1) to be the collection of all function on |
which is of bounded variation on I.

Definition 7.

Suppose now g:1 — Ris of bounded variation on |, i.e., g € BV(l), the

collection of all functions of bounded variation on I. Then we know g is the
difference of two increasing bounded functions (see Theorem 6 of Functions of
Bounded Variation and de La Vallée Poussin's Theorem). Let v, be the total

variation function of g defined using an anchor point a € | as in Functions of
Bounded Variation and de La Vallée Poussin's Theorem. Then

1 1
0= (r,0+900)- L2 and ,00=(r,0-9(0)+ L2
are the positive and negative variation functions of g. More precisely,
Ve (X) =@ (X) + 0, (X) = P(x) + N(x) - g(a)

g(x)=P(X)=N(Xx)=g(a) +»(x) —9,(x),



where P(x)=¢,(x)+g(a) and N(x)=¢,(x). Note that ¢, and ¢, are as defined in
Functions of Bounded Variation and de La Vallée Poussin's Theorem. Note

1 1 1 1
that P(x) = E(vg (X)+ g(x))+E g(a) and N(x) = E(vg (x)-9(x)) +5 g(a) are both
increasing functions.
Thus, we can define the signed Lebesgue Stieltjes measure,

Ay » B(l) = [0, +o0],

by 2, = up — sy -

Theorem 8. Suppose | is an open interval andg: I — R is of bounded variation
onl. Then 4, is aunique finite signed Radon measure such that

ﬂ“g ((a’ b]) = g+(b) - g+(a) )
foralla, b e Iwitha<b. Furthermore, |4,|<y, and |4,|(1)< Total variation

of gon I. If g is right continuous, then || =, .

Proof. By Theorem 5, 4, is a signed finite Radon measure and so it is a real
Borel measure.
Forany a, b in I with a < b we have
7 ((@,b]) = 445 ((a,b]) = 24 ((a,b]) = P, (0) = P.(8) (N, (b) = N, (a))
=P, (b)-N,(b)-(P.(a-N,(a)=9,(b)-9,(a).
Suppose A: &) — (oo, + 00) is a signed finite Radon measure satisfying,

A((a,b])=g, (b)—g,(a) for any a, b in I with a <b. Then take the Jordan

decomposition of 4, A=1"-4". Since Ais a finite measure, 1" and A~ are
positive finite measure. Therefore,

A4 ((@,b]) = s ((@,b]) — 24 ((@,0]) = 2" ((a,b])~ 4" ((a,b]) -
It follows that ., ((a,b])+ 2 ((a,b])=2"((a,b])+ 4, ((a,b]) and so
(1o +27)((@b])=(2" + 1, )((a,b]).

Since (u, +4) and(4" +u, ) are positive finite measures which agree on any
(a,b] in 1, we conclude that (,up +I)=(/1* +,uN) and so Ag=HMp =ty =" =" =1.
This proves the uniqueness of 4,.



Now we claim that s, + 4, =4, . Foranya, binlwitha<b.

(44 + 14y )((@,b]) = 1> ((a,b]) + 1y ((8,b]) = P.(b) — P.(8) + N (b) - N, (a)
=P.(0)+ N, (b)-P.(a)-N.(a) = (P+N),(b)-(P+N),(a)
=V, (0)—v,. (@) = 1, (a,b].
We deduce as before that s, + s, = 4, -

Therefore, for any Borel setE in I,
|2 (B)| = |15 (E) = 1ty (E)| < 11 (E) + 12y (E) = 4, (E)

It follows then, by the definition of the total variation measure \/Ig\, of 1,

|4| < 1, . Hence, [4,|(1) < p, (1) :sxlilp(vg(x))—ixrlll‘(vg(x)): total variation of g on 1.

Suppose now g is right continuous on I. Take a, b in | witha <b.

Take any partition a=x,<x <---<x, =b. Then
Zn:|g(xi)— 9(%)|= Zn:\,lg ((x_1,x1)[, since g is right continuous,
i=1 i=1

< ‘AQ‘((a,b]) .

It follows that v, (b)-v, (a) <|4,|((a,b]) . As g is right continuous, v, is also right
continuous. Hence, , ((a,b]) =v,(b)-Vv,(a) <|4,|((a,b]). We have already shown
that |4, <, and so x, ((a,b]) =|4,|((a,b]) and this implies that |2,| = 4, .
Theorem 9. Suppose | is an open interval and g € BV(I) is a right continuous
function. Then A =4, and A, =, , where P and N are the positive and
negative variation of g, 4, =4, — 4, is the Jordan decomposition of the measure

4, . (See Theorem 13, Complex Measure, Dual Space of L Space, Radon-
Nikodym Theorem and Riesz Representation Theorems.)

To prove this, we need the following result about associating a positive Radon
measure to an increasing function.

Theorem 10. Suppose g &(1) — [0, +o0) is a finite Radon measure. Pick a
point e in the open interval | and any point  in R. Define a function g,:1 >R

by

10



~ u((ex]), ifx>e
g”(x)_”{—y((x,e]), if x<e

Then g, :1 >R is increasing and right continuous and

g,(b)-g,(@) = x((ahb])
forall a, b l, with a <b.
Proof. Suppose E and F are Borel subsets in | and E < F < I . We know that
H(E)< pu(F).

Thus, if e<x<y, g,()=y+u(Ex])<y+u(Eyl)=9,(x). If x<y<e,
9,00 =y-u((xel)<y-u((y.e])=g,(y). If x<e<y,then g, (x)<r<g,(y). We
can now conclude that g, is increasing.

Now, we show that g, is right continuous. Take any x in |. Take a sequence

(x,) such that x, tends to x on the right. Since g, is increasing we may assume
that (x.)is decreasing. Suppose x>e. Then (e, x]=ﬁ(e, x.]1. By the continuity

n=1

from above property of measure, since x((e,x,]) <o
Ilm,u ex,])= (ﬂ(e X ]j ((e.x]).

If x <e, then (x,e] =O(xn,e] . Therefore, by the continuity from below property

n=1

of measure,
I|m,u (x,.€])= [U(x e]} ((x.€]).

This proves that g, is right continuous.

Suppose a, b €l, with a<b. If a = b then obviously g,(b)-g,(a) = «((a,b]).
Now assume that e<a<b. Then g,(b)-g,(a)=x((ebl)-x((e.al)=x((ab]). If
a<b<e, then g,(b)-g,(a)=—x((b,e])-(-u((ael)=u((ahb]). If a<e<b, then
9,()—-g,(@) = x((eb])-(-u((a.e])=x((a,b]). Hence, we have for a, b €l, with a
<b, g,(b)-g,(a)=u((@b]).

Proof of Theorem 9.

11



Suppose now x, e 1 is the anchor point used in the definition of the total
variation function v, of g. (For reference see under Total Variation in Functions

of Bounded Variation and de La Vallée Poussin’s Theorem.) Plainly the
function g and g-g(x,) generate the same Lebesgue Stieltjes signed measure.

Without loss of generality we may assume that g(x,)=0.

Let 4, =24, -4, be the Jordan decomposition of the measure 4,. Since g is of
bounded variation, 4; and 4, are positive finite Radon measures. Note that

\/lg\ =2, +2; . (See Theorem 13 of Complex Measure, Dual Space of LP Space,
Radon-Nikodym, Theorem and Riesz Representation Theorem.)

By Theorem 10, we may find two right continuous functions u and w defined on
l, with u(x)) =w(x,) =0 such that A; =4, and A, =4, Therefore, by Theorem 8,

t, =[] =2+ 25 = 1, + i,
= Hyow

by uniqueness of Lebesgue Stieltjes measure (Theorem 5).

Hence, for x> x,,
v (0) = vy (%) = 24, ((X: XI) = £y (%6, X1) = (U + W) (X) = U+ W)(X,) .
As v, (%) =u(x)) =w(x)) =0, we get v, (x) =(u+w)(x) for all x> x,.
Similarly, for x<x,, from
Ve (%) = vy (X) = sy, (% %) = £y (% %) = (U+W) (%) = U+ W)(X),
we deduce that v, (x) =(u+w)(x). Hence v, =u+w.

In a similar way using A, =4," - 4,” =, —u,, and that forany a<b in I, by
Theorem 8,

4, ((@,b])=9.(0)-9.(@)=g(M)-9(a),

we can show that g=u-w.

It follows that u=%(vg +g)=P and w=%(vg —g): N, since g(x,)=0. Therefore,

Ay =up aNd A, =py.

12



Proposition 11. Suppose g e BV (1)and I is an open interval. Forany setE c I,
m*(g(E)) < x4, *(E) .

Proof.

We show that for any set E < I, m*(g(E)) <m*(v,(E)). Since g is a function of
bounded variation, g is a bounded function and so v, is bounded. Therefore,
m*(v,(E)) <. Thus, given any &> 0, there exists an open set U such that

U 2V, (E) and m*(U) <m*(v,(E))+¢.

Since U is open, U is a disjoint union of at most countable number of open
intervals, i.e., U=(I,, I, is an open interval and

n

mU) = Ym(1,) < m*(v, (E)) + .
Moreover, v, (U)2E. Let A=g(v,"(1)). Forany x,y in A, there exist

a,bev,"(I;)such that x=g(a) andy =g(b). Then

x=y|=|g(a) - g(b)| <|v, (@) — v, ()| <m(l,).
It follows that the diameter of A is less than or equal to m(l,). Hence,

m*(A)<m(l,).

Now, g(E)=g(v,"(U))=g [vg‘l(u IiD =g (Uvﬁ(h)} =Ua(v, (1)),

Therefore,

m*(g(E))gZm*(g(vg‘l(li))):Zm*(A)SZm(Ii) <m*(v, (E))+¢.
Since &> 0 is arbitrary, we conclude that m*(g(E)) <m*(v,(E)). Hence,
m*(g(E)) <m*(v,(E)) < u, *(E) by Theorem 6.

This completes the proof of our assertion.

Proposition 12. Suppose g € BV(I), | is an open interval and g is continuous.
Then g is absolutely continuous if, and only if, 4, < m, the Lebesgue measure,

i.e., 4, is absolutely continuous with respect to the Lebesgue measure, m. That

13



is to say, 4,(E)=0 for all Borel set E — | with m(E) = 0. (We are being cautious
here. Not all Lebesgue measurable set is 4, measurable.)

Proof.

If g is absolutely continuous, then g is a Lusin function and so for any E c |
with m(E) = 0, m(g(E)) =0 and so by Theorem 9 of Function of Bounded

Variation on Arbitrary Subset and Johnson’s Indicatrix, m(v,(E))=0. It follows
from Theorem 6 that #, *(E)=m*(v,(E))=0. If E is Borel, then

14| (E) =, (E)=p, (E)=0 and so 4(E)=0. Hence, 4, <m.

Suppose 4, is absolutely continuous with respect to the Lebesgue measure. Let
E be a set of Lebesgue measure zero. Then there exists a G, set G such that
EcGand m(G)=0. Note that G is a Borel set. Therefore, 1,(G)=0. Thisis

true for all Borel subset of G. Thus, |4,|(G) = 4, (G) =0and so
m(v, (G)) = 1, (G)=0. It follows that m(v,(E))=0. Hence, m(g(E))=0. Thus, g

Is a Lusin function. As g is a continuous function of bounded variation and the
domain is an interval, by Theorem 15 of Absolutely Continuous Function on
Arbitrary Domain and Function of Bounded Variation, g is absolutely
continuous. This completes the proof of Proposition 12.

Suppose | is an open interval. Denote the collection of all absolutely continuous
functions on | by AC(1).

Theorem 13. Suppose g € AC(l) and | is an open interval. Let [a,b]< 1. Then
for any Borel set E c[a,b], Ag(E)szg'  H, (E):‘/lg‘(E)sz|g'| and

#,(E)=m(v,(E)).
Proof.

Since g is absolutely continuous, g is absolutely continuous on [a, b].
Therefore, by Lemma 2 of Absolutely Continuous Function on Arbitrary
Domain and Function of Bounded Variation, g is of bounded variation on [a, b].

Moreover, the total variation function of g, v, , is also absolutely continuous on

[a, b]. (See Theorem 15 below.) As P(x)zé(vg (x)+g(x))+%g(x0) and
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N(x) = %(vg(x) - g(x))+%g(x0) it follows that the positive and negative variation
functions, P and N of g are also absolutely continuous on [a, b]. Therefore,

2, (E) = 11, (E) — 14, (E) =m(P(E)) —m(N(E)) , by Theorem 6,

:.[Eg, '

by Theorem 2 of A de La Vallée Poussin’s Decomposition, as P and N are Lusin
functions by Lemma 3 of Absolutely Continuous Function on Arbitrary Domain
and Function of Bounded Variation and are differentiable almost everywhere
with respect to the Lebesgue measure.

By Theorem 8, since g is right continuous, |4, |(E) = 4, (E) and so by Theorem 6,
4| (E) = 14, (E) = m(v,, (E))

:.[E|g,| '

by Theorem 1 of A4 de La Vallée Poussin’s Decomposition, Since g is a Lusin
functions and is differentiable almost everywhere with respect to the Lebesgue
measure.

We state the properties of the nature of the sets of discontinuity,
differentiability, non-differentiability and infinite differentiability. These are
properties that help to understand the statements in the next few theorems. The
results are scattered in the literature and a comprehensive account, where all the
statements and their proofs are present, seems to be difficult to find or
unavailable and some proofs are only found in Russian. The main secondary
source is the article, Derivatives, by A. M. Bruckner and J. L. Leonard in the
American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in Analysis
(Apr., 1966), pp. 24-56. Note that we shall use only the Borel property of the
set involved and not necessary the Borel class it may or may not belong to.

Theorem 14.

(1) For a finite function, f, the set of points of discontinuity isa F, set.

(2) For a finite function f, the set of points, where f has infinite derivative +oo is
F_, and the set of points, where f has infinite derivative —co isF_; and so are

Borel.
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(3) The set of points where f has no finite derivative is of the form G, UG,_,
where G,_is of measure zero and the set of points where f has no derivative
finite or infinite is also of the form G, UG, , where G,_is of measure zero.
Hence, they are Borel.

(4) The set of points where a continuous f has finite differentiability is F; and
hence Borel.

(5) The continuous image of a Borel set is Lebesgue measurable.

For the definitions of F_, G,, G, and F_ sets, we refer to Chapter XII in Set

Theory, by K Kuratowski and A Mostowski or Chapter Two Section 30 of
Topology Volume 1 by K. Kuratowski.

Reference to (1) and (4) can be found in Set Theory by Felix Hausdorff.

A reference to (2) is V. M. Tsodyks, On sets of points where the derivative is
equal to +oo or —oo respectively, (in Russian) Mat. Sb. (N.S.), 1957, Volume
43(85), Number 4, 429-450.

For (3), see Theorem 3.12 of the article by K M Garg, A Unified Theory of
Bilateral Derivates, Real Analysis Exchange, Volume 27, Number 1 (2001), 81-
122. This is attributed to Zahorski and Brudno.

For (5), we refer to Chapter 11, Theorem 11.18 of Thomas Jech’s Set Theory.

It is also useful to note the following result concerning the absolute continuity
of the total variation function of an absolutely continuous function, which is of
bounded variation.

Theorem 15. Suppose A is a measurable closed and bounded subset of R or an
interval and f : A— R s a finite valued function of bounded variation on A. Then

f is absolutely continuous, if and only if, v, : A—> R is absolutely continuous on
A.

Proof. By Theorem 13 of Functions of Bounded Variation and de La

Vallée Poussin's Theorem, f is continuous if, and only if v, is continuous.

So, we assume that f is a continuous function of bounded variation.
Since |f(y)- f(x)|s\vf (y)-v, (x)\ forany x,ye A, it follows that if v, is

absolutely continuous, then f is absolutely continuous.

16



We note that v, is an increasing bounded function and so is of bounded
variation.

Suppose now f is absolutely continuous. By Lemma 3 of Absolutely
Continuous Functions on Arbitrary Domain and Function of Bounded
variation, f is a Lusin function. Since f is a function of bounded
variation, by Theorem 10 of Function of Bounded Variation on Arbitrary
Subset and Johnson’s Indicatrix, v, 1s also a Lusin Function.

If A is closed and bounded, by Theorem 4 of Absolutely Continuous
Functions on Arbitrary Domain and Function of Bounded variation, v, is

absolutely continuous since v, is a continuous function of bounded

variation, which is also a Lusin function.
Suppose A is an interval. Since v, is a continuous bounded increasing

Lusin function, by Theorem 15 of Absolutely Continuous Functions on
Arbitrary Domain and Function of Bounded variation, v, is absolutely

continuous.

Remark.

We have the following criterion:

If | is an interval, then a continuous function of bounded variation g:1 - RIS
absolutely continuous if, and only if, v, is absolutely continuous if, and only if,
H, is absolutely continuous with respect to the Lebesgue measure m, if and only
if, 2, is absolutely continuous with respect to the Lebesgue measure, m.

Theorem 16. Let | be an open interval and g BV(l). Suppose E is a Borel set
in I and K is any real number in R such that g is differentiable at every x in E,
possibly infinitely and g'(x) > K for all x in E (respectively, g'(x)<K). Then

A, (E) > Km(E) (respectively, 4,(E)<Km(E)). In particular, if there exists g’ ona
Borel set E 1 such that either m(E) =0 or g'(x)=0 for all x in E, then

|4, (E)=0.

Proof.

If g’(x)=0 for all x in E, then by Theorem 11 of Arbitrary Functions, Limit
Superior, Dini Derivative and Lebesgue Density Theorem, m(g(E))=0. By
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Theorem 10 of Function of Bounded Variation on Arbitrary Subset and
Johnson'’s Indicatrix,m(v,(E))=0. As |1 |(E)< u, (E)=m*(v,(E))=0, |4,| (E)=0.

Suppose g'exists finitely on a Borel set E in I. Then by Theorem 12 of

Absolutely Continuous Function on Arbitrary Domain and Function of Bounded
Variation, g is a Lusin Function on E. If m(E) =0, then m(g(E))=0 and it

follows that m(v,(E))=0 and |4,|(E) < , (E) =m*(v,(E))=0 so that |4,|(E)=0.
Note that 4, and 4, are finite Radon measures.

We begin by proving for the special case when E is contained in an open
interval (c, d) in I.

Thus, m(E) < .

Suppose g is differentiable at every x in E, possibly infinitely and g’(x) > K for
all xin E.

Let x €E.

g'(x) = liminf {w:te(c,d)}zgi@ b,
where b, =inf {w:t € (x—§,x+5)m(c,d)—{x}} .

Suppose g'(x)=k. Note that b, /" g'(x) as 6 \v0*. Therefore, if g'(x)=k <o,
given any &> 0, there exists §, such that forall 0<5<5,, k>b,>k—¢. This
means that for all te(x-d,x+35)n(c,d)-{x} and 0<6<3,,

900 5 Sk-e2 K-,
t—x
Hence, for t, e (x-6,x+8)(c,d) and t, > x, wg K —¢ so that
9(t) —9() 2 (K —&)(t,=X) =mmmmmmmmmmmmmmmes (1).
Similarly, for t, e (x-5,x+8)n(c,d) and t, < x, g(ti:)g:(x) = g(X))(:tQi(tz) >K-¢
so that
900 —9(t,) 2 (K —¢)(x—t,) ==mmmmmmmmmmmmmmes (2).
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Combining (1) and (2) we get for t,t, e (x—5,x+5)(c,d) and t, <x<t,, and
0<o<0,=0,,

9(t)-9(t) 2 (K-&)(t—t) = (K=&)f ~t,| -=-rwmmemmemme (3)

If g'(x) =+, b; /+0 @as § \v0". It follows that there exists &, , such that for
all 0<6<5,, , by=K-¢. We deduce similarly, that for t,t, e (x—8,x+5)n(c,d)
with t, <x<t, and 0<6<6,=6,, ,

g(t1)_g(t2)Z(K_g)(g_tz):(K_g)|t1_t2|'

For each integer n> 1, let
E, ={XE E:gt)-9g(t,)>(K-g)t,—t,|,t, >x>t,,t,t, e(x—%,x+%)m(c,d)—{x}}.
Plainly, E, cE,,.
We claim that E = O E,.
n1

Take xeE. Then there exists &, , >0 such that for 0<5<46, =6, ,,
t,,t, e (x=5,x+5)n(c,d) with t, <x<t, we have that

g(tl)—g(tz)Z(K—g)(g—tz):(K—8)|t1—t2|.
Take any integer n > 0 such that %< 3, ., then we have for any

t,t, e(x—%,x+%jm(c,d)—{x} with t, <x<t,,

at)-a(t,) Z(K_g)(tl_tz):(K_5)|t1_t2|'

Therefore, xeE,. It follows that E =0En.

n=1

Now, as m(E) <o, by the continuity from below property of Lebesgue outer
measure, m(E)=m*(E) = Lim m*(E,) <.

Starting with E,, since m*(E,) <o, we can find an open set U, containing E,
such that U, < (c,d) and

m(Ul)Sm*(E1)+g%.
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By the definition of #,, *(E,) we may choose U, such that

1
luvg *(Ul) < :uvg *(E1)+g§ .

Since E, cE, ,, we may assume that U, c U, ,.

n+l7?

Now, U, is a countable union of disjoint open intervals. To each of these open

intervals, we can further partition it into at most countable number of non-
overlapping intervals, each with length less than or equal to 1. Now, we collect
all these intervals with non-empty intersection with E,. These then form a

countable covering of E,. Let {li}; denote this countable covering. Note that
each I ~nE =@. Thus, we have Zm(li)gm(ul)gm*(El)Jrg%.

k
Suppose the end points of I, is a; and b; with a; <b'. If a; orb; isequal to X,
then g(b))-g(a;)>(K—&)[os—a|. Ifxis in the interior of 1}, then

g(b})-9(a) = (K -¢)|b} —a;|. Since g is of bounded variation on I, the set of

discontinuities of g is at most countable. We may thus assume that g is
continuous at the end points of 1,. By Theorem 8,

2 (@5 00)) = 24 (a5, 1) = 4g (2. b)) = 4, ([a, 1) = 9 (b ) - g (@) = (K - &) i~
This means, 4, (1;)=(K-£)m(1}).

Let v, =(J1;. Then
k

2 (V) =4, (ijli}zk:zg (1)

z(K—g)Zk:m(li):(K—g)m(LkJIij:(K—g)m(Vl). 4)
We have also that
m(\/l)Sm(Ul)Sm*(El)+g%, --------------------------- (5)
and
A A (6)
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Now that E, cE,. Consider E,-V,. We can now take an open set U, such that

1 1
E,-V,cU, , mU,)<m*(E, —V1)+g? and g, (U,) < u, *(E, —V1)+g?.

As before we can write U, as a countable union of non-overlapping intervals
| JJ; with length less than or equal to % and discard those intervals with

empty intersection with E,-V,. We may assume that each of these intervals
does not contain any of the intervals in the decomposition for Vv,. Since any
interval in v, has empty intersection with E, -V,, if one of these intervals, say J,
, has a non-empty intersection with an interval | in v,, then J -1 is at most a

union of two disjoint intervals, at least one of which has non- empty intersection
with E,-V,. Discard the interval with empty intersection with E, -V, or

proceed to select the other interval if it has nonempty intersection with E, -V,.
In this way we may assume that each interval J. has non-empty intersection
with E, -V, and does not contain any interval in the decomposition for V,. Now
let U, = JJ;. Then 4, (U,)>(K-&)m(U,). Let xeU,-V,. Then xeJ, for some

k and there exists e, e E, -V, with e, € J,. If x=¢,, then x belongs to one of the
non-overlapping intervals in U, -V,. If x=e,, then [x,e,] or [e,,x] has empty
intersection with any one of the intervals of the decomposition for v, and so
[x,e,] or [e,,x] is contained in one of the non-overlapping intervals in U, -V,. It
follows that the non-overlapping intervals in U, -V, has non-empty intersection
with E,-V,. Hence,

2,(U,-V)) = (K—e)m(U,-V,).
Let v, =V,uU, . Then
2,(V2)=24,(V,uU,-V,)) =4, (V) +4, (U, -V))

> (K —8)m*(V1)+(K —g)m(U2 —Vl) =(K-g)mV, uU,) =(K-g)m(V,) ---- (7)

m(V,) =m(, vU,) <m(V;) + m(U,) < m*(E1)+3%+m*(E2 _V1)+8%

<m*(E, ﬂVl)+g%+m*(E2 _V1)+52_12= m*(E2)+8(%+2—12j. """"" (8)

Similarly, we have,

21



1 1
,uvg (Vz) = ,Uvg (V1 UUz) < /ng (V1)+/1Vg (Uz) < ,uvg *(E1)+E+,uvg *(Ez —V1)+g?

< Ky *(EzﬁV1)+€%+ﬂvg*(EZ—V1)+8% *(E)+g[; 212] ---- (9)

Note that V, cV,.

Assuming that we have defined v, o E, and a decomposition of V, into non-

overlapping intervals such that each intervals has non-empty intersection with
E, and satisfying

A B (10)
k=1
n, 1
, ) € 1, *(E) £ o wmmmmmemeemseeoeeeees (11)
k=1
and
j’g (Vn ) 2 (K _g)m(\/n)  TTTTTTETETETETT T (12)
Then we can choose an open set U, ., such that E -V, cU_, and
MUy.0) S (B —Vy) 42, oo (13)
1
/uv (Un+l) luv *(En+1 V )+82n+l --------- (14)

We note that U, is a countable union of disjoint open intervals. To each of
these open intervals, we can further partition it into at most countable number of

non-overlapping intervals, each with length less than ﬁ Now, we collect all

these intervals with non-empty intersection with E,, -V, and discard those with
V.. Furthermore, as we deliberated above, we

empty intersection with E, -V,

may assume that each of these intervals does not contain any intervals of the
decomposition in V,. Moreover,

7, (U

9

Vo) z(K-emU,.,,-V,).

n+l

sothat v, cV

n+1

Now let v, , =V, LU and we can show similarly that

n+l n+l

m(Vn+l) = m*(En+l) + gzz_k ) /ng (Vn+1) ,le (En+l) + gz
k=1

n+1
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ﬂ’g ( n+1) 2 (K ‘c")m(vn+l) .
We restate the argument below.

Let {1 "”}k denote this special countable covering for E,,-V.. We shall use the
V,)=D.

n+l

same symbol for the covering u_,, = J1i* Note that each 11" ~(E
k

Thus, we have from (13),m(U,,,) = Zm(|””)<m(En+1 -V, )+82.}+1 :

Suppose the end points of 1™ is a/* and b} with a]* <b’™. If a/" orb’™ is

equal to x, then g(o/™)-g(a;™) = (K —¢)|bi™ —a;*|. If x is in the interior of I,

bn+l n+1

then g(bi™)—g(ai™) = (K —¢)|b;

set of discontinuities of g is at most countable. We may thus assume that g is
continuous at the end points of 1/*. By Theorem 8,

((an+1 bn+1)) ((an+l bn+1]) ([an+1 bn+l)) ([an+l bn+1])

=g(bf")-g(a") (K -¢)
This means, 4, (1;™")=(K-g)m(I[™). Thus 2,(U,,,)>(K-&)m(U,,,). Similarly,
Va)2(K=g)m(U,,=V,).
Thus, 4, (V1) =2 (V, WU, -V, ) =4, (V) +4, (U, —V,))

n+l _Vn ) = (K _8)m(vn UUnJrl) = (K _g)m(vn+1) .

. Since g is of bounded variation on I, the

bn+l n+1

we deduce that 2, (U

n+l

>(K—g)m(V,)+(K—&gm(U

LHV=Ow.

n=1
Then g, (V) =lim s, (V,) <lim g, *(E,)+ gigpoekzz—lkzyvg *(E)+¢ and
=1

mV)=limm(,) < lim m*(En)+Iim522ik: m*(E)+¢.

k=1
Since 4, = u, — 1, by the continuity from below property of positive measure,

lg(v)zlijpoﬂ( )= (K- g)llmm( )=(K-g)m(V).

ty, (V =E)=pt, (V)= 4, (E)S g =mmmmmmmmmmmmmmmmommmnonooes (15)

9 9
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Therefore, [4|(V -E)=u, (V-E)<e& and so 4, (V-E)<py, (V-E)<e. It follows
that

Similarly,

mV-E)=m(V)-m(E)<e.  ----=--m-m--m-mm- (17)
Now, 4 (E)=4,(V)-4,( —E)>(K-&m(V)-¢ .
If (K-¢)>0, then (K—&)m(V)=(K—&)m(E) = (K —&)m(E) —|K — ¢ ¢.
If (K-&)<0,then
(K=)m(V) > (K —&)(M(E)+&) = (K —&)M(E) + (K — )& = (K —£)m(E) —|K — ] &.
It follows that

2, (E)=2,(V) =4, (V —E) > (K —&)m(E) —|K —¢| e —¢ .
Letting ¢ > 0" , we get
2, (E) > Km(E).

Suppose now E is any Borel subset of I and g'(x)>K forall xin E. Let (c,) be

a sequence such that ¢, “\vinf 1 and (d,) be a sequence such that d, /"sup1 .
Then(c,,d,)is contained in the open interval I. Let E,=En(c,,d,). Then

E,cE. and E =O E,. Note that each E, is Borel. By what we have just
=1

n+1

proved, A (E,)>Km*(E,). Recall that A, = s, — 1, . Then by the continuity
from below property of the positive Radon measures, . and x,, ,

L@C(ﬂp(En)_ﬂN (En)):lmﬂP(En)_imﬂN (En):/uP(E)_luN(E):ﬂ’g(E)' Therefore,
2,(E) =lim 4, (E,) > K limm*(E,) = Km(E).

This proves the first part of the Theorem.

For the case when E is a Borel subset of | such that g’(x) <K for all x in E, we
start by considering the function —g. So, we have (-g)'(x)>-K for all x in E.
We may then conclude that 4 (E) >-Km*(E). But A (E)=-4,(E) and so

multiplying by -1 gives 4,(E) < Km(E).
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De La Vallée Poussin Decomposition of Lebesgue Stieltjes measure.

Now we state the de La Vallée Poussin theorem on the decomposition of the
signed Lebesgue Stieltjes measure generated by a function of bounded variation
on an open interval.

Theorem 17. Let | be an open interval and geBV(l). Let
l4s ={x e :g is discontinuous at x} ,
| = {x e | ;g is continuous at x and g is differentiable at x with g’(x) =+o0 } and
I = {x el : g is continuous at x and g is differentiable at x with g’'(x) =— } .

Then for every Borel set Ec 1 -1,

/”tg(E)zleg'+/19(EmIM)+ﬂg(EmI%) and

#,,(E) :‘/Ig‘(E):IE|g'|+ﬂg(Em L) +|4,(ENL).

Moreover, there exists a Borel set N < I -1, with m(N) =z, (N)= m(vg(N)) =0

such that for all xe 1 (1, UN), v,'(X)=|g'(x)| . Note that 2,(En1_,)<0.

We shall need the following useful result on the additivity of total variation of
two functions when one is absolutely continuous of bounded variation and the
other a singular function of bounded variation.

Theorem 18. Suppose | is an open interval and g:1 — R is an absolutely

continuous function of bounded variation and h:1 — R is a singular function of
bounded variationon I. Thenv,,, =v, +v,.

Proof.

For b>awith a, b in I, let Var,[a,b] be the total variation of g on the interval
[a,b]. Then v,
Therefore, for x> x,,

(x) =Var,,,[%.x] for x>x, and v, (x) =-Var,,[x, %] if x<x,.

Ve (X) =Var X, X] <Var [x,, x]+Var [X,, X] = v, (x) +v, (X) .

FOr x <Xy, =V, (X) =Var,,,[x, x,]<Var,[x, x,]+Var, [, xX]=—v, (X) -, (x) and so
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Vo (X) 2 v, (X) +v, (%) .

Similarly, for x> x,,
Vh (X) :Var-(g+h)—g [XO’ X] SVar—ngh [XO’ X] +Varfg [XO’ X] :Varg+h [XO’ X] +Varg [XO1 X] = Vg+h (X) + Vg (X)
and for x<x,,v, (x) = Viginyg (%) =V (X) +4 (%)

Thus, for x> x,,v,.,(x)=v,(x) <v,(x) and for x<x,, v,(x)-v,,,(x) <-v,(x) and
that x> x;, v, (X) —vg,, (X) v, (x) and for x<x,, V,.,(X) =V, (X) <-v,(x).

It follows that

ng(X)—Vh(X)‘SVg(X) for x>x, and

Vaun (0 =V, (X)] € =, (X) =|v, (¥)] for x<x,.
Let f(x)=v,,,(x)-v,(x). Then for anyy > x,

[T (y) - F(x)]=

Vo (V) =V () = (V4 (¥) =V, ()| = Var, . [x, y]1-Var,[x, y]]..
Then taking x, = x, we see that
|f(y)— f ()| =]Var,,[x, y]-Var,[x, y]| Var,[x, y] = v, (y) =V, (X) . =====---- (1)

Since g is absolutely continuous and of bounded variation, v, is also absolutely
continuous. It follows from the inequality (1) that f is absolutely continuous.

Now, f'(x)=v,,, (X)-v, (x)=|(g+h)(x)|-|h'(x)|, almost everywhere on |,
=|g’(x)|, almost everywhere.

Since fand v, are absolutely continuous, f —v, is absolutely continuous and

(f-v,) 0= F00)-v, 0 =|g'(0)|-

9'(x)| =0 almost everywhere on 1.

It then follows from Theorem 7 of Absolutely Continuous Function on Arbitrary
Domain and Function of Bounded Variation, that f —v, =0, since

f (%) =v,(%)=0.Hence, v, =v, +v,.

Before we embark on the proof of Theorem 17, we state and prove the next
result, which facilitates the proof of Theorem 17.
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Theorem 19. Suppose I is an open interval and g:1 — Ris a function of
bounded variation. Then g can be decomposed into a sum of three functions,
g=9,+ 9.,+9,, where g is absolutely continuous, g, (x) = g'(x) almost

everywhere on |, g, is a continuous singular function, i.e., g.'(x) =0 almost
everywhere and g.is the difference of two Saltus functions. For any Borel set E
inl,

() 2, (B)=2(9.(0)—-9.()),

yeE

(b) 4, [ (B) =], ()-g_(¥),

yeE

(c) #, (B)=2(l9. (V-9 +|a(y)~g_(y)]) and
(d) luvg(EmIdis)=luvgs(EmIdis)zﬂng(E)'
Furthermore,

26, | (0 =14) = 11, (0 =14) =| A0, | (1) = |4 | (a) = 14, (1) = 14, (1) =0.
If g is continuous at every point of the Borel set E, |,|(E) = x4, (E) and
#,  (E)=pn, (E).
For any Borel set Ec 1, t, (E)=p, (E)+u, (E)+u, (E).

Proof.

We define the saltus function for unbounded increasing function h:1 - Rin
general as follows. Pick a reference point x,. We assume that h is continuous at

X,. Then define

2. (R =h(y)+h(x)=h (x),x>x,
yel Xy <y<x
h0)=1= 3 (R()=N())+N0) = (X)X <K, . ===mmrems (1)
yel ,x<y<Xq
0,X=X,

Then h(x)=0 and (h—hs)' (x) =h’(x) almost everywhere on 1.

It can be shown that h—h, is an increasing continuous function on I. A proof of

this is given in Theorem 13 of Arc Length, Functions of Bounded Variation and
Total Variation, when the domain is a closed and bounded interval. The proof
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there is also applicable when the domain is any interval. Now we assume that h
IS an increasing bounded function and so ¢ =h-h_is also an increasing

continuous bounded function. The function ¢ can be decomposed into a sum of
an absolutely continuous function, h, and a continuous singular function, h,
such that h,'(x) = h’(x) almost everywhere on I, h,(x) =h,'(x) =0 almost
everywhere on I, thatis, h—h. =¢=h_+h andh=h_ +h +h . Note that

#'(x) = h'(x) almost everywhere. The function h, may be defined by

[yt x=x,

X

h,, (X) = .
~[ "N @t x<x,

We note that since h is increasing and bounded, h is differentiable almost
everywhere on | and n' is finite for almost all x in I. It follows then by
Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation that h’ is Lebesgue integrable. It follows, as
indicated in the proof of Theorem 8 in Absolutely Continuous Function on
Arbitrary Domain and Function of Bounded Variation by applying Proposition
9 of Absolutely Continuous Function on Arbitrary Domain and Function of
Bounded Variation, that h, is absolutely continuous on I. Note that

h, =(h—h,)—h,, and since (h—h,)and h, are continuous, h, is continuous and
h,(x) = 0 almost everywhere on 1.

Now g is of bounded variation and so g =P-N s a difference of two bounded
increasing functions. So, taking the decomposition of P and N we get

g :Pab+Pc+Ps_(Nab+Nc+Ns):(Pab_Nab)_'_(R:_Nc)_'_(Ps_Ns)'

Let g, =P,—N,_,,g.=P.—N_and g,=P.—N_. Then g, is absolutely continuous
as it is the sum of two absolutely continuous functions. g, is the sum of two

continuous singular functions and so it is a continuous singular function. The
function g, is the difference of two saltus type functions. We call it a jump

function. Note that g-g, =g, +g, IS a continuous function.

By definition of the Saltus function and as g is continuous at x if, and only if,
v, is continuous, we have, using definition (1), that
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> (0.N-9.(N)+9(x)—g (x),x>x

yel , Xg<y<x

0.(0=1= 2 (9.(N-9.(N)+9(X)~ g (¥), X <Xy =mrmmmmemmmea 2)

yel , x<y<xg

0,x=X,

Thus, using (2), we have, for x,<a<b,

g.(b)-g., (@)= Y, (g+(y)—g_(y))+g(b)—g_(b)—( > (9+(y)—g_(y))+g(a)—g_(a)J

Xg<y<b Xg<y<a

=2 (9.(9-9.(9)+9(®)-g_(b)-(9(a) - 9_(a))

a<y<b

=2 (9.(9)-9.(v)+9(B)-g_(b)-(9(a) - 9.(2))
For a<b<x,,

g,0)-g,(@)=— >, (9+(y)—g(y))+g(b)—g+(b)+( > (9+(y)—g(y))—(g(a)—g+(a))]

o yel,a<y<xq

= > (9.(0-9.(n))+9(b)-9.(0)-(9(a)-9.(a))
= > (9.(0)-9.(y)+9b)-g_(b)-(9(a)-9,()).

el,a<y<b

For a<x, <b,
9,0 -9,@)= > (9. (N-9.N)+a®)-g.®+ > (9.(N-9.()-(9(@~-9,(@))

% <y<b yel,a<y<xg

=2 (9.(0-9.(n)+9b)-g_(b)-(9(a)-9.(a)).

a<y<b

Hence, for a<b with a,be 1, we have

9,0 -9,(@)= > (9.(¥)-9.(¥)+9(b)-g (b)-(9(a)-9.()). ---------- 3)

a<y<b

It follows that

|9,0) -9, @[< D (9. (V) 9| +|g(y) ~g_(¥)]) +|g(b) - g_(b)| +|(9(a) - 9. (@) -

a<y<b

Thus, if we take any partition of [a, b], x,=a<x <x,<---<x, =b ,1=1, ..., n-1,
we see that

D190 -9, (x ) < D (l9. (N -9y +|g(y)-9_()])+|a®) - g_b)|+|(a(a) - 9. ().

1<i<n a<y<b
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Therefore,

Var, [a,b]< 3" (|9.(¥)-9(M)|+|a(y)—9_(y)])+|g®) - 9_(b)|+|(9(a) - 9. ()| -

a<y<b

If there is only a finite number of discontinuities in [a, b], then

Var, [a,b]> > (|9.(y)-9(Y)|+]a(¥)—9_(¥)])+|9(b) —g_(b)| +|(9(a) — 9. (a))| and so

a<y<b

Var, [a,b]= > (|9, (¥)-9(Y)|+]a(y)-9_(y)]) +|ab) - g_(b)| +|(a(a) - 9. (a)) -

a<y<b

On the other hand, for any set K of finite number of discontinuities in [a, b],

Var, [a,b]> > (19, (¥) - 9(V)|+|9(y) - 9_(y)]) +|g(b) —g_(b)| +|(9(a) -9, (@)

yeK

Therefore, since the number of discontinuities of g is at most countably infinite,

Var, [a,b]> 3" (|9, (V) -9()|+|g(y)—9_(¥)])+|g®)—g_(b)|+|(g(a) - 9. (a)) -

a<y<b

Thus,
Var, [a,b]= > (|9.(¥)=9(y)|+[g(y) = 9_()]) +|g(®) - g_(b)|+|(9(a) — 9.(a) )| - (4)

a<y<b

Now take any xe I, in the interior of [a, b]. Then, by taking b such that g is

continuous at b and b ™\ x, and a such that g is continuous at a with a.” x, we
get

(Ve,). 00=(vg,) (0 =19,(0=g()[+]g(x) =g (X)] . =======mmmemmeems (5)
Let G(x)=g(x)—g.(x). Then G(x) is continuous on I. Therefore,
G.(x)=0,(x)-(9), N =6G(X)=9(x)-g,(x) .
By identity (2), for x> x, ,
(9:). 0=0.0-9()+g.)=" > (9.(9)-9.(y))

yel Xy <y<x

and for x<x,,
(9;), () =9,(x)—g(x)+9,(x)

=0.(0-9()+g,00— >, (9.()-9.(¥))+9(0)—9,(x)

yel , x<y<X
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=— > (9.(9-9.(V)-

X<Y<Xy

Note that (g,), (%) =09.(%)—9(x,)+9,(x) =0, since g is continuous at x,.
Similarly, we have G_(x)=g_(x)—(g,)_(x) =G(x) = g(x)—g,(x) so that
(8.)_ (0 =9_()-9(x)+9.(x)
For x>x%, , (9,). (%) =9_()-9(x)+9,(x)
=g.(0-9(0)+ 2>, (8.(N-9-(N)+9(x)-9.(x)

yel Xy <y<x

= > (9.(0-9.(n)

yel , xp<y<x
and for x<x,, (g,) (X)=9.(x)—9(x)+9,(x)
=9.()-90)- > (9.(N-9.(N)+9(x)-9,(x)

yel, x<y<xy

=— > (9.(0-9.(v).

yel , x<y<xy

We have also that (g;)_ (%) =9_(%)—9(%)+0,(%)=0.

Thus, we have,

> (9,(N-9.(9), x> %,
yel X <y<x
(9), (=10, x=x,, R — (6)
- > (9.(0-9.(N) x<x
yel x<y<xg

and

Z (9. (V) —9_(¥)), x> X,,
X<

el x<y<

(9,) (X)=10, x=x, . mmemmemememe—e- (7)
(9,(Y)—9.(y)), x<X,

yel xSy <
It follows from (6) and (7) that for any x in I,
9,.(0) -9, (x)=9.(x)-9_(x) .
Therefore,
2, (03 =9,00-9,(0)=09,()—g_(x).  =m=m=m=mmmmmmme- (8)
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From identity (5), we get for xe I, ,
t, (X)) =(ve, ) 09=(v,) (0 =]9,00 =900 +]g()~g_ ()| --=---- (9)

Obviously, for xel Iy, 4, ({x}):(vgs )+ (X)—(vgs ) (x)=0 since v, is continuous
at X.

Note that we use the same anchor point x, for the definition of total variation
function as well as for the Saltus function. Recall that

Vg(x):P(X)+N(X)_g(X0) and g(x) =P(X) = N(X) = g(X)) + @ (X) —9,(X) .
Now assume x=x,. Let y>x and yel.

Recall that x,, a point of continuity of g is the anchor point for the total
variation function of g.

If [a,b] is an interval with end pointsin 1-1,,, then

, ([ablnlg)= > u ({x}), since u,_isfiniteand I, is countable,

xe(a,b) Nl

= > ]9.0-9()|+]a(x)—-g (x)| by identity (9).

xe(a,b)Nlgis

But 4, ([a,b])= (vgs )+ (b)— (vgs )7 (a)=v, (b)-v, (a)
=Var, [a,b]

= > 19.00-9(9|+[g()-g (x|, by identity (4).

xe(a,b)Nlgis
Hence, g, ([ab]-14)=0. Itfollowsthat 4, (1-14)=0. Therefore,
|4, [(1=14,)=0 and s0 4, (1-14,)=0.

Thus, for any Borel set E in |, we have

24 (E)= A5 (E— 1)+ 2, (EN1y) =2, (Enly,), since 4, (E-14) =0,

= 2 (9.00-9.(0)=2(9.(x)-9.(x). by identity (8).

xeENl g xeE
This proves part (a).

As 1, is countable and |4, | is finite, we have that
26,|(B) = |2 | (E 1) +[2g |(E—140) = |2, |(EM14)
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= > [0.(0-9.(0)|=2]g. () -g_(x)|. *)

xeENlg;s xeE

We may deduce this as follows:

Take any xel,, . Pickany a, b in I such that g is continuous at a and b and
a<x<h. Then

> (9,(0-9_(x)

ye(a,b)

=|4, ([a,b])| < |4, |[a.bD < > [9.() -9 (¥)|-

ye(a,b)
Letting a./* x and b\ x, we get
9. 00— g (9| =], )| <|2, | ) <9, () -9 (x|

and so |2, |©3) =g, (-9 (x| Thus, (*) follows since I, is countable and g is
of bounded variation so that > |g, (y)—g_(y)| <.

Yelgis
This proves part (b).
Similarly, for any Borel setE in I,

Hy, (E)= Hy, (E—1g) TH, (Enlg)= Hy, (Enlg)= Z Hy, )

xeENlgig

= > ]9,()-9(X)|+|a(x)—g_(x)|, by identity (9),

xeENlgys

=219, (9= g()|+|9 () —g_(x)

This proves part (c).
We shall show next that for te 1y, , «,  ({t})=x,_({t}).

Suppose x is an isolated point of 1. Then, there exists a, b in 1 -1, such that
a<band [a,b]n1, ={x}. Let 5<%min{x—a,b—x}. Let h=g_ +g,.

Var, [a,b] =Var, [a+J,x—o]+Var, [x+6,b—o]+Var, [x -5, X+ ]
+Var, [a,a+o]+Var,[b—-0,b]
>Var,[a+8,x—8]+Var,[x+8,b- 5]+ (| (x+35)~h(x)| + |n(x) - h(x-5)|)

+|h(a+5)—h(@)|+|h(b)-h(b-5)|.
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=Vargc[a+5,x—5]+Vargc[x+5,b—5]+(‘h(x+5)—h(x)‘+‘h(x)—h(x—5)‘)

+|g, (

Therefore, letting 5§ — 0", we get,
h, (%) =h(x)]+|h (%)= h () +[(
(9:). (%)= (95) 9| +|(9 ) ()~ ( s_(x)\)

Therefore, by the continuity from above property of measure,
o, (042 11, (61 +(|(02). () (9 x)-(0.) ()= s, ({x})-
Hence, u,, ({x})=w, ({x}) as w,, (05)<m, (00)+ a0, (X)) =m, ({X})-

Let xel . Suppose x is not an isolated point of 1, but a limit point of 1.

~g.(b-0)|.

Var, [a,b] >Var, [a, x]+Var, [x,b]+ (

=Var, [a,b]+ (

Since v, is continuous at X, given any ¢>0, there exists a 5 >0 such that
t—x|<s and tel implies that v, (t)-v, (9|<&. Thus, forall 0<x-t<s and
tel, Var [t,x]=v, (x)-v, () <e and forall 0<t—x<s,

Var, [x,t]=v, (t)-v, (X) <&

Take yel suchthat y<x and |y—x/<&.
Take a partition of [y,x] by non-overlapping intervals {1,} where I, =[a,b]
Then, for each i,

|h(6) —h(a)|=[g,(b) -9, (a) + 9. (B) - 9. (8)| 2|9, (0) - 9,(a)| |9 () - 9. ()]
Hence,

Zlh(h)—h(ai)l2Zlgs(bi)—gs(ai)l—Zlgc(bi)—gc(ai)l-
But Z|gc(b,)—gc(ai)|£Vargc[y, x] < & . It follows that
iZIh(b.)—h(ai)lZZIQS(bi)—gs(ai)l—s
Therefore, Var[y,x]>Var, [y,x]-& This means

V() =i (Y) 2 vy () —vy (Y)—¢

Letting y ./ x , we get
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Ve () =(v)_ () 2v, (X)—(vgs ) (X)—&. mmmmmmmmmmmmmmeee- (10)
Now we take ye1 such that y>x and |y-x/<3.

As before, take a partition of [x, y] by non-overlapping intervals {I,} where
I, =[a,b]. We have as above that

Zlh(h)—h(ai)l ZZIQS(bi)—gs(ai)l—s

It follows similarly that v, (y)-v,(x) > v, (y)-v, (x)—¢. Letting y \x , we get

V), =1, (02 (v, ) (0 =vy ()= . =mmmmmmmmmmmeees (11)
Combining (10) and (11), we obtain

(), 0=(1) 00 2(v, ), (0 =(v,) (9-2e.
That is to say, u, ({x})=(v), (0-(1) ) =(v, )+ 0)—(vy, ) 0-26=p, ({x})-2¢.
Since ¢is arbitrary, it follows that 4, ({x})> 4, ({x}) sothat x4, ({x})= s, ({x}).
This means, x4, ({t})=mu, ({t})=x, ({t}) forall tel,.

Hence,

o (Eole)= >, ()= 2 a, ()

xeEnly;s xeEnly;s

= > (l9.(x)=9(|+]g(x) -9 (3)]).
Thus,
ﬂvg(Emldis):ﬂvgc+gs(Emldis)zﬂvgs(Emldis) """""""""""""""""""" (12)
= > (lo. () -g(9|+|g(x)-9. () = ( X)-g(¥)|+|g(x)-g_(x)))
=4, (E).
This proves (d).

Now, since 1, is countable and g, is continuous on 1., by Theorem 6,
w, () =m*(v, (14))=0. It follows by Theorem 8 that |2, |(14) =4, (14:)=0.

Similarly, as u, (1) =m*(v, (14,))=0, |4, |(14)=0 and s0 4, (I4)=0.
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For any Borel set E in 1 -1, take any Borel subset F c E, since
‘ﬂgs‘(F) S‘ﬂgs‘(l - Idis) =0, /195 (F)=0. Similarly, H, (E)=0.

Therefore, for FcE and Ec -1,

A,(F)=24, (F)+4, (F)+ 4, (F)=4, (F)+4, (F)
=(;Lgab + A, )(F) = Agrq, (F) -

This implies that |4,|(E)=|4,, ., |(E) for Ecl-1,.

In particular, 4,(E)=4, ., (E) for Ec -1 .

Oabt9c

Thus, |4,|(E) =4

Gab+9c

BE)=u,  E)=u, ., (E) by Theorem 8 and Theorem 18,

=, (E)+u, (E).

Now, u, (E)=p,  (E)=4, (E)=4, .. . (E), by Theorem 18,

=, B)+u, E)<p, (E)+u, (B)+m (B)=4, (E)+m, (E),
since Ecl-1g.
But, for Ec1-1,,
t,, )+, (B)=|2|(B)<u, (B)<p, (B)+u, (E)
and o u, (B) =|4[(B) =, (B)+u, (B) =4, (E).

But u, (B)=m,, (E)+u, , (E)andso

'uvg +0, (E) :’u"g (E) ! fOf E o= I - Idis : . (13)

For Ecl ,

t, (E)=p, (E)+u, (E), by Theorem 18,
=u, (BE)+u, (E=lg)+um, (ENly)
=p, (E)+p, (E-lg)+u,  (Enly), by (13),
=p, (E)+u, (E)+u,  (Enly),since 4, (Enly)=0

=4, (E)+u, (E)+p, (E),as
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t,  (Enlg)=p, (Enly) =y, (E) by (12).

This concludes the proof of Theorem 19.

Proof of Theorem 17.

By Theorem 14, 1,,1_, and 1 _, are Borel. Therefore, 1 -1, is Borel and so for
any Borelset Ec1-1,, Enl_ and EnI_ are Borel.

A (B)=2,En(1-(1,,Ul_))+ A, (ENI, )+ A4 (ENL)
=, En(I=(lgul, Ul )+ A4ENI)+A4(ENL,),
since E is contained in I -1, .

Now,
ZgE(1=(lg Ul V1)) = st (En(1=(lge U1 U1))) =y (EN(1=(lg U1, 01)))
=m(P(EN(1-(Dge w1, U1L,)))-m(N(En(1=(Da w1, UIL,)))), == (1)
by Theorem 6, since P and N are continuous on E.
Let

Enk = {X € I: there is a derived number of v, at x greater than k and a derived
number of g at x, whose absolute value is less than h.} and

S = {x e I: there is a positive derived number and a negative derived number of
gatx.}.

Let H= U{Eh,k :0<h<k,handk are rational numbers.} .

Then, H = {x <l: there is a derived number of v, greater than the absolute
value of a derived number of f at x.}.

Let K=HuS. We have already shown in the proof of Theorem 15 of
Functions of Bounded Variation and de La Vallée Poussin's Theorem, that

m(S)=m(g(S))=m(v,(S))=0,
m(H)=m(g(H))=m(v,(H))=0

and that for xe I -K, |g'(x)|=v, (x).
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Let A*={x e :g is differentiable at x finitely or infinitely} and
A={xe | :qg is differentiable finitely at x} . Then A and A* are Borel and

| —(lg Ul Ul ) c(1-A%UAC (1 -A*)U(A-K)UK . =mmmmmme- (2)
By Theorem 19,

A (En(1=(1w1L))) = (En(1=(lgs Ul 01L))) = s, (En(1=(lge 0l U1L))
< 4, (En(l —A*))+ﬂvg (EnA)
:m*(vg (En(! —A*)))+m*(vg(E mA)).

Since 1-K cA*, 1-A*cK and s0 m*(v, (En(1-A%)))<m*(v, (K))=0. It
follows that x4, (En(1-a%))=m*(v,(En(1-A%)))=0. Hence
A (En(1=(1,01.))) < 4, (EnA)=|4[(EnA).

But EnAcEN(1-(1,,Ul,))s0 that |3 |(EnA) <[4 |[(En(1-(1,..v1..))).
Therefore,

A (En(1=(1., U1.)))=|4|(EnaA).
As m*(v,(K))=0, g, *(EnK)=m*(v,(ENK))=0.
Therefore, u, (EnA)=pu, *(En(A-K))=m*(v,(En(A-K))).

But by Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation,

IEmA

Hence, |4,|(En(1-(1.. v1.)))=u, (En(1-(1.U1.)))=|4[(EnA) =4, (EnA)

g'|=m*(v, (Ea))=m*(v, (En(a-K))).

g".

EnA

Since m(1-)=0, [ |o'|=].

|(En(1=(Lo v 1)) =, (En(1=(L v L)) =,

Now observe that m*(v, ((E ~K)))=0implies that

g". Thus,
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1 *(ECK)+ 11, *(EnK) =1, *(ENK)=0

so that 14, *(ENK) =, *(EnK)=0. Since g is continuous on E, P and N are
continuous on E. Therefore,

m*(P((ENK)))= s *(EnK)=0and m*(N((ENK)))= s *(EnK)=0.
Similarly, m*(v, (E~(1-A*)))=0implies that
m*(P(En(1-A%)))=m*(N(En(1-A%)))=0.
It follows from (2) that m(P(E (1 (D, w1, w1.,))))<m(P(EA)). Since
ENAcEN(1—(Dy, UL, UL)), ( (EnA))< ((Em( ~(Dyee V1, LLL))))-
Therefore, m(P(E(1-(Dy, L1, w1,))))=m(P(EnA)). We deduce similarly
that m(N(E(1 —(Dy. w1, U1,))))= m(N(EmA))
Hence,

m(P(E(1=(Dye U1 U1L,))))=m(N(E(1 =(Dge U1, V1))
= m*(P(EnA))-m*(N(EnA))

=m*(P(En(A-K)))-m*(N(En(A-K))

_J‘EmAK _IEmA K)N’

[ P —[ N,

EnA EnA

by Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation,

- Em(A+)P _IEm(A,)N ’

where A, ={xe|:g is differentiable finitely at x and g'(x) >0} and
A_={xe:g is differentiable finitely at x and g'(x) <0},

by the proof of Theorem 2 in 4 de La Vallée Poussin’s Decomposition,
- J‘Em(A+) g,_J‘Em(A,)(_g’) - J.E g’

Hence, 4,(En(1-(Dy, vl vl.))=] g"

disc

39



Thus,
A (B)=[ g+ A (ENL)+ A (ENI,) . =mrmmmmmmmmemmemenoe 4)

For any Borel set B in Enl_,, by Theorem 16, 4,(B)>Lm(B)>0, by taking any
positive L > 0. Therefore, |4|(En1,.)=4,(EnI,). Similarly, for any Borel set
Bin Enl_,, by Theorem 16, 4,(B)<-Lm(B)<0 and so

| (En1)==4,(EnL).

Since |4,] is a positive Borel measure,
46| (B) =[ A, (En(1=(1, U1))+|4 | (EnL) +[A|(ELL)
=[AJEA(1=(1,V1.))+ A4 (ENI)-A4(ENI)
= [ o]+ 4 E ALY =2 E A1), e ©)

by (3).
Since g is continuous on E, it follows from Theorem 19 that

4, ) =[] )= [ o[+ A E A1) A ENL)

~[ |0+ 1, €L+, EAL. ©)
Note that
AEN) = (EN1) =gy (ENIT) <0 mmmmmmmmmmmmmmecoeeeee 7)
and A4, (EN1,)=s(EN1,) = (ENI )20, mmmmmmmmmmmmmeeee oo (8)

Hence, u,(EnI1_)<u,(Enl_) and w4 (EnI1_) >y, (ENIL,).

ﬂ’g(E M I+c>o) = ‘ﬂ‘g‘(E M I+oo) = /uvg (E M I+oo) = /uvngg(xo)(E M I+w) = 1uP+N (E M I+oo)
:/LlP(EmI+oo)+ILIN(EmI+oo) ----------------------------- (9)

From (8) and (9),

Similarly, since ‘lg‘(E N)==2,(En1_)=u(Enl)-u(Enl_)and

t (ENIL) = (ENI )+ (EnL,), We get

40



Thus,
2, Enl,)=m(ENL,) and 4, (Enl_)=—u (ENL,). - (12)

It follows from (4) and (12) that

2(E)=[ g+ (ENl)—uy(ENL)
= [ g'+m(PENL))-m(N(ENL_,))

and from (5) and (12) that,
4| B) = [ lgT+ - (EnI ) +my (EL)
:J'E|g'|+m(P(EmIm))+m(N(EmI%)).
Let K=HuUS. Then m(K)=0. LetV be a Borel set such that K <V and

m(V)=m(K)=0. Now let B=vV —(1_ul_). Notethatif g'(x) =+ org'(x) =—o,
then v,/ (x) =|g'(x)|=w andso 1, ul_ cl1-K. Let

B=Ku(Vn(l-Kul_ul,)). As m(K)=0 and m(V(I-Kul_ul_))=0,
mB)=m(Ku(VA(Il-Kul_ ul.)))=mK)+m(V A(1-Kul_ul_))=0.

Note that m(g(B))sm(g(K))+m(g(v A (I —Kulwulm))). Now, m(g(K))=0
and g is a Lusin functionon(1-Kul,, ul_,) so that

m(g(Vn(1-Kul_ ul.)))=0 because m(V ~(1-Kul, Ul ))=0. Itfollows
that m(g(B))=0. Similarly, as m(v,(K))=0 and by Theorem 10 of Function of

Bounded Variation on Arbitrary Subset and Johnson’s Indicatrix,
m(v, (V(1-Kul, ul,)))=0. Therefore, m(v,(B))=0. Now, B is Borel and

m(B)=m(g(B))=m(v,(B))=0 and as K< B, I-Bc 1-K, and so by Theorem 18
of Functions of Bounded Variation and de La Vallée Poussin's Theorem,
|g'(x)|=(vg)'(x)for all xin 1-B. Now let N=B-1I,. Then N is Borel, g is
continuous on N and so |4,|(N) = », (N)=m(v,(N))=0. Therefore, ,(N)=0.
Obviously, m(N)=m(g(N))=0. Thus, forall xgNUIl,, v,'(x)=|g'(¥)|, finitely
or infinitely.

This completes the proof of Theorem 17.
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As a consequence of Theorem 17 we have:
Proposition 20.

The continuous image of a Borel set is Lebesgue measurable. If E is a Borel set
in the open interval 1 and g:1 — R is a function of bounded variation on I, then

A,EN,)=u(EnI_)=m(P(ENL,)),
A(EL)=—u (EnL)=-m(NEAI)),
t(EnI_)=m(P(EnI_,))=0 and
u(ENI,)=m(N(ENI_))=0,

where P and N are respectively the positive and negative variation functions of
g, which are increasing on I.

Therefore, if Ec -1, ,
2, (E) =IEg'(x)dx+m(P(EmIM))—m(N(Em 1))
and ‘ﬂ,g‘(E):,uvg(E):m(vg(E)):IE|g’(x)|dx+m(P(EmIm))+m(N(EmIm)).

There exists a Borel set N < I -1, with 4 (N) =, (N)=0 and

m(N) =z, (N)=m(v,(N))=0 such that for all xe I-NU I, v,'(X)=

9'(x)| .
Proof.

2,(Enl,)=u(Enl,_)=m(P(EnI,)) follows from (12) in the proof of
Theorem 17 and the fact that P is continuous on 1, . We deduce in like
manners that 2, (En1_)=-u(EnI_)=-m(N(EnI_)). Since P and N are
continuous on 1, and I_, respectively , by (10) and (11) in the proof of Theorem
17, m(P(ENI_))=u(Enl_)=0 and m(N(Enl,,))=u(EnI,)=0.The
remaining assertions are given by Theorem 17.

The following is an application of Theorem 17 to absolutely continuous
function of bounded variation.

Proposition 21.

Let | be an open interval, g € BV (I) and suppose g is absolutely continuous.
Then for any Borel set E in I,
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2,(E)=m(P(E))-m(N(E))=[ 9",
and m(v,(E)) =, (E)=|4,|(E)=m(P(E))+m(N(E))= [

There exists a Borel set N < I with 4,(N)=0 and

m(N) =z, (N) =m(g(N)) =m(v,(N))=0 such that for all xel-N, v,'(x)=|g'(x)| .

Proof,

For any Borel set E in I, 4,(E) = u.(E)—, (E), where P and N are the positive

and negative variation functions of g as defined in Definition 7. Since g is
absolutely continuous, by Theorem 15, the total variation function of g, v, , is

also absolutely continuous on 1. It follows that P and N are absolutely
continuous on I. Therefore, by Theorem 6,

24 (E) = 11(E) — 4, (E) =m(P(E))-m(N(E)).
By Theorem 17, ﬂg(E)=ng'+/lg(Eml+w)+ﬂg(EmI%).

By Theorem 18 of Functions of Bounded Variation and de La Vallée Poussin’s
Theorem, m(En1_,)=m(Enl,,)=0. Since P and N are Lusin functions, it

follows that m(P(En1,,))=m(N(Enl_))=m(P(Enl_,))=m(N(EnI_,))=0.
Hence, A, (En1.,)=m(P(Enl,))-m(N(EnI,,))=0 and

A (ENI_)=m(P(EnI_))-m(N(EnI_,))=0.

Therefore, 4,(E) = 1, (E)— 1, (E)=m(P(E))-m(N(E)) :L g,
By Theorem 17,
m, ) =[] (B) =]

-I;

as we have just shown that 4, (Enl,,)=4,(EnI_)=0.

0+ A (ENL)+[A(ENL)|

gl

Now, v,(x)=P(x)+N(x)-g(a), where ae1 is the anchor point used in the

definition of the total variation function of g. Note that P(x)-g(a) is absolutely
continuous on | and hence is a Lusin function on I. Therefore,

My, (BE) = tto_gayin (E) = ttp_g 0y (E) + 12, (E)
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=m(P*(E))+m(N(E)), where P*(x)=P(x)-g(a),
=m(P(E))+m(N(E)).
Therefore, as v, is continuous on |, by Theorem 6,

!

m(vg(E))=yvg(E)=\zg\(E)=m(P(E))+m(N(E))=jE g/.

The last assertion is from Theorem 17.

This completes the proof of Proposition 21.

Finally,

Theorem 22. Let | be an open interval and geBv(l). Let
l4 ={xe:g is discontinuous at x},
|, ={xel:g iscontinuous at x and g is differentiable at x with g'(x) =+ } and
|, ={xel:g iscontinuous at x and g is differentiable at x with g'(x) =—0 }.
Then for every Borel set Ec I

ZE)=[ g+ 24 (Enl)+4(EnL)+ X (9.()-9.(v)),

yeEnl g

4| )= [ 1o+ 4 (EnL)+[4 (EnL )+ > l9.(v)-g (v)] and

yeENlg;s

u, €)= |g'+ 2, (En1)+|4 (EniL)+ 3 (

xeENl g

g, (X)=g(9|+|g(x)-g (¥)])-
Moreover, there exists a Borel set N < I -1, with m(N) =« (N) =m(v,(N))=0
such that for all xe 1 —(14UN) v,'(x)=|g'(x)| . Note that A (Enl_,)<0.
Proof.
2,(E) =2, ((E—14s))+ 4, (Enlg,)
:Jaumsg'wg (E=1g)n )+ A (E=14)N1,)
+2,, (Enly)+ 4, (Enly)+4, (Enly), by Theorem 17,
:J-Eg’+ﬂg(Eml+w)+ig(Eme)+O+0+ > (9.(y)-9.(y)), by Theorem 19,

yeENl g
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:J'Eg’+/1g(Eml+w)+lg (EN)+2(9.(9)-9.().

yeE
25| (E) = |4 (E 1)) + |2 [ (E M 1)
=] 191+ 4 (E=1a) N1 )+ |2 (E= 1) A 1L )|+ 4, (E1,,), by Theorem 17,
:J‘E|g,|+/19(Emlm)_/lg(Eml_w)‘i"ﬂg‘(Eﬁldis), _________________ (1)

Now forany Fc Enl,,

Ay (Flg) =4, (Fnlg)+4, (Flg)+4, (Fnly) =4, (FNlg), by Theorem 19.

Therefore,
V“g‘(EmIdis):‘ﬂ'gs‘(Emldis): Y la.m-9.()| --- (2)
yeEnlg
It follows that
2| B =[ 1+ 2, (BN 1) =4 (BEALL)+ 3 0.0 =g.(y)]. ===mmmrmmemms 3)
yeENnl ;s

M, (E)= M, (E- Idis)+/uvg (Enlg)= va‘(E - Idis)+/uvg (Enly), by Theorem 19,
:J.E_Idis

= [.lo1+ 4 (En1 ) +[4 (ENI_)+4, (Ely,) by Theorem 19 (d)

=[;

The last assertion came from Theorem 17.

0+ 4, (En1,)+|4 (EnI)|+ x4, (Enly), by Theorem 17,

+ 2, (En ) +[4, (B )|+ X (j9. (0 -a(y)|+a(y) -9_(¥)])-

yeE

g!

Remark 23.

1. Note thatif g:1 — R is absolutely continuous and I is a bounded interval,

then by Lemma 2 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation, g is of bounded variation. Therefore,
Proposition 21 applies when g:1 — R is absolutely continuous and I is a

bounded interval.
2. We have, in the proof of Theorem 17, deduced that for any Borel set E in I,
A (Enl,)=|4|(EnL,,)

=u, (Enl.)=m(v,(Enl,)), by Theorem 19 and Theorem 6.
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By Proposition 20, 4, (Enl,, )= (Enl,, )=m(P(ENl,,)).
Therefore, m(v,(Enl,))=m(P(ENL,)).

Similarly,

4 (En1)|=|4(En1.) =4, (EnI.)=m(v,(En1.)), by Theorem 6.

We deduce similarly as above that

A (ENI,)=-uy (Enl_)=-m(N(EnI_,)), where N is the negative
variation of g, and so we have m(v, (En1_.))=m(N(ENL_,)).

Hence,
u, (E)=|_

+m(vg (Eﬁ |+°°))+m(vg (Eﬁ I_w))+xe;i (
~[lgl+m(P(EAL))+m(N(EAL))+ ¥ |

9. (X)-9(0)|+]g(x)-g.(x)|)

= [lo+m(P(EAL.))+m(N(ENL))+ 3

xeE

ﬂg(E)szg’+m(vg (Emlm))—m(vg (En Lw))+ > (9.()-9.(0)

yeENlg

=[ g+m(P(En1,))-m(N(ENI_))+>(g,()-9 ()

yeE

g’ g, (x)-9(0)|+|g (x) -9 (%))

9. (X) 90| +|g (x)~g_(9))-

By Theorem 22 and Remark 23 (2), In terms of measure of the images we have:

Corollary 24. Let | be an open interval and g BV (1). Let
l4 ={x e :g is discontinuous at x},
|, ={xel:g iscontinuous at x and g is differentiable at x with g'(x) =+ } and
| = {x e | : g is continuous at x and g is differentiable at x with g'(x) = —0 } :
Then for every Borel set Ec I

lg(E)szg'+m(vg (Em Im))—m(vg (En Lw))+ > (9.()-9.(0)

yeENlg

:J.Eg’+m(P(Em 1,..))-m(N(En1_))+> (9, (") -9.(¥)).

yeE

4| )= lg+m(v, (EnI.))+m(v, (EnIL))+ > ]o.(1)-g ()]

yeENlg;

= [ lgT+m(P(EnI))+m(N(ENI_))+> ]9, (V)9 ()

yeE
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and
ﬂvg(E)=J.E g’ +m(vg (En Im))+m(vg (En Lw))+ > (

~Jglem(P(EAL.))sm(N(EAL))+ 3

xeE

g, (X)-g()|+|g (x)-g (x)))

9, (X)-9()|+]g (¥)~g_())-

Moreover, there exists a Borel set N < I -1, with m(N) = x, (N) =m(v,(N))=0

such that for all xe I —(14UN), v,'(X)=|g'(x)| . Note that 4,(En1_)<0.

If g is continuous at every point of E, then

m(v, (E)) =, (E)=|4|(E) = |g]+m(v, (En1.,))+m(v, (EnL,)).

Remark 25.

1. Suppose | is an open interval and g is a function of bounded variation on I.
Note that Hh, = Mo+ Hy where P and N are respectively the positive and negative

variations of g. Therefore, if g is continuous on E,
m(v, (E)) =, (E)=m(P(E))+m(N(E))=] |g]+m(v, (En1,))+m(v,(EnI_,))
= lg|+m(P(En1,))+m(N(EnL.)).
We also have that
lg(E):,uP(E)—,uN(E):m(P(E))—m(N(E))zIEg’+m(vg(Emlw))—m(vg(EmI%))
=IEg'+m(P(EmIm))—m(N(Emlm)).
Thus, if g is continuous on I and if | |g]=m(v, (1))=total variation of g on I,

then m(v,(1,..))=m(v,(1..))=0. It follows that v, is a Lusin Function.

Therefore, by Theorem 15 of Absolutely Continuous Function on Arbitrary
Domain and Function of Bounded Variation, v, is absolutely continuous and so

g is absolutely continuous.

2. Suppose | is an open interval and g is a function of bounded variation on 1.
By Theorem 19, for any Borel set Ec 1, t, (E)=u, (E)+u, (E)+u, (E).

Since v, is absolutely continuous, by Proposition 21, we have

=.|.E|g’|.

(Y )’

m(vgab (E)) - ’u"gab (E) - .[E(Vgab ), =.[E
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By Theorem 19 (c), 4, (E) :Z(|g+(x)—g(x)|+|g(x)—gf(x)|).

xeE

Now, lung(E)zluvgc(E_Idis)—i_/uvgc(EmIdis)=lung(E_|dis)
:’leg (E_Idis_l-#oo_l—w)_'_ll’lvg (Em|+w)+ﬂvg (Emlfm)

Notethat 4, (Enl.)=x, (ENl)=4, (Enl)+u, (Enl,)=u (ENL,),

since H, (ENl,)= m(vgab(Em |+w)) =0 as v, is absolutely continuous and
m(EnI,)=0. We deduce in the same manner that u, (EN)=pu, (ENL,).
We show below that 4, (E—(l4 1. Ul.,))=0. Let NcI-I, be the subset as
given in the proof of Theorem 17 such that m(N)=m(v,(N))=x, (N)=0. Then
it follows that t, (N)=p, (N)=p, (N)=p, (N)=0 as

t, (N) =1, (N)+u, (N)+u, (N). Thus,
t, (E=(las Ul Ul))=4, (E=(Iuul, Ul UN)).

Note that m(1,, U1, Ul UN)=0. Let B=E—(I, Ul Ul UN).
Let H :{XEB:(gC)' (x):O} . Then by Theorem 16, \;tgc\(H)=ng (H)=0. Since

(gc)' (x)=0 on H. Since (gc)' (x) =0almost everywhere, m(B—H)=0. Note that

g is differentiable finitely on B and so on B—H. By Theorem 16, since
m(B-H)=0, |4|(B-H)=0.Hence, u, (B—H)=|4|(B-H)=0. As

#,, (B=H)=0, u, (B-H)=0. It follows that #, (B=H)=p, (B-H)=0.
Therefore, as 4, (N)=0, #, (E=(14ul, vl_,))=0 and
#, (E)=p, (EN1)+u, (ENL,). Thus, /,ngC(E):m(P(EmI+w))+m(N(Eme)).
This gives another proof of Theorem 17.
3. Suppose I is an open interval and g is a function of bounded variation on 1.
A (E)=2,(En(1 =14))+ 4, (ENly,)

=1 (EN(I=14)) — iy En (1 = 13)) + A4, (Enly)

=m(PEN(—14))-M(NENI =14))+4,(ENly),

by Theorem 6, since P and N are continuous on I -1,
:_[Em(lildis)g'er(P(Em(lmuI_w))—m(N(Em(l+wul_w))+/19(Emldis),

by Theorem 2 of A de La Vallée Poussin’s Decomposition,
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= g'+m(P(En1_))-m(N(EnI_,))+ 4 (Ely),
since m(P(Enl_,))=0andm(N(EnI_,))=0,

= [ g'+m(P(EnL.))-m(N(ENI_))+>(9.(¥)-g_(¥)), by Theorem 19.

Similarly,
t, (E) =, (EN(I=14))+p, (ENlg)
=t (EN (I =14)) + iy (EN(I _Idis))+/uvg(Em|dis)
=m(P(Em(I _Idis)))+m(N(Em(| _Idis)))+:uvg(Em|dis)
- Em(l_ldis)|g'|+m(P(Em(lmu|,w))+m(|\|(Em(lmu|,w))+yvg(Em|dis),
by Corollary 3 of A4 de La Vallée Poussin’s Decomposition,
=[lgl+m(P(EAIL))+m(N(ENL))+u, (ENly),
since m(P(En1_,))=0andm(N(Enl,,))=0,

- [Jlglem(P(EAL)rm(N(EA 1)+ 3
by Theorem 19.

g, (X)= 909 +|g(x) -9 (9)]),

O =l €A1 E )
=luvg(Eﬁ(| —lge)) + ﬂ’g‘(Em lais)
Z.[E g’ +m(P(Em|+w))+m(N(Emlw))+‘ﬂ’g‘(EmldIS)

by using Corollary 3 of 4 de La Vallée Poussin’s Decomposition as above,
:IE|g'|+m(P(Em 1,..))+m(N(EnIL_))+>|a.(y)-9g_(y)|, by Theorem 19.

yeE

This gives another proof of Corollary 24.

Lebesgue Stieltjes Integral

Suppose f:1 —Ris a Borel function or more precisely Borel measurable
function. Suppose g:1 — R is an increasing function. Then we have the
Lebesgue Stieltjes measure, x, , which is a positive Radon measure. In the

standard way we can define the Lebesgue integral of a non-negative function f
with respect to the Lebesgue Stieltjes measure 4, L fdu, . This is called the

Lebesgue Stieltjes integral. For the characteristic function of a Borel set in I,
L xsdu, =1, (B). Thus, we can define the Lebesgue Stieltjes integral for a

simple Borel function. For a non-negative Borel function, f, the Lebesgue
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Stieltjes integral, L fd 4, , is just the Lebesgue integral of f with respect to the

Lebesgue Stieltjes measure 4, . (See Definition 19 in Introduction To Measure

Theory.) Note that for a non-negative Borel function, f, there exists a monotone
increasing sequence of simple Borel functions converging pointwise to f and by
the Lebesgue Monotone Convergence Theorem, the Lebesgue Stieltjes integral
of f is the limit of the sequence of the Lebesgue Stieltjes integral of the Borel
simple functions of the sequence. This may be infinite. In general, for a Borel
measurable function f, we can define IB fd 4, @s IB frdu, —IB f-du, , whenever it is

not of the form (+o0) — (+0).

Suppose g is a function of bounded variation on I. Note that 4, is a finite
signed Radon measure and \Ag\ and », are finite Radon measures. (See Theorem

8 and its proof.) Then, following Introduction To Measure Theory, we can
define in the usual manner, the following Lebesgue Stieltjes integrals for any
Borel setE in I.

[T, [ fd|4|and [ fdu, .

Suppose g is a right continuous function of bounded variation. By Theorem 9,
in the Jordan decomposition of the finite real Borel measure, 1, =1, -4,

Ay =up and 2, =, . Therefore, for any Borel measurable function, f:1 >R,
and any Borel setE in I,

[ fdag =] fdag—[ fdA; =] fdup—[ fdu,.
We assume that | fdu, —[_fdg, is notof the form -eo—(+e0 Jor —eo—(—0).

We now assume g is absolutely continuous. It follows that P and N are also
absolutely continuous. Therefore, by Theorem 6, for any Borel set E in I,

1 (E) =m(P(E))
=J'E P'dm,

by Theorem 13 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation.

Now, [ fdu, = f'du,—[ f-du,. Weassumethat [ f'du, [ f du, isnotof
the form +oo—(+o0 ).
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Therefore, by Proposition 28 of Introduction to Measure Theory,

[ trdu—| fdup=[ fPdm—[ f-Pdm=[ fPdm. Thus | fdu, = fPdm.
Similarly, assuming that | f*d, —|_fd, isnot of the form +eo—(+<0 ), we
deduce that | fdu, =[ fNdm. Itfollows that

[ fda = fPdm—[ fNdm=[ f(P'=N")dm=[ f(P—N)dm=|_ fg'dm. Hence,

_[E fd 2, =jE fg'dm. e (1)

Now for any Borel set E in I,

4| (E) = 4, (E) =m(v, (E)), since g is continuous on I,
:J-Evg'dm,

by Theorem 13 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation. It follows, by Proposition 28 of Introduction to
Measure Theory, that

Jo 1A= J, fda, <[, £ vydm= [ lgdm. oooeroeroeeoeeee )

We note that we may define g'(x) =0 when g is not differentiable finitely since
the set {x | : g is not differentiable finitely at x} 1S of measure zero and that both g
and v, are Lusin functions so that the definition will not affect the identities (1)

and (2).
Thus, we have

Theorem 26. Suppose f:1 — Risa Borel functionand g:1 - Ris aright
continuous function of bounded variation. We assume that jE fd 1, —jE fd g, IS

not of the form +co—(+0 )or —co—(—o0), where P and N are the positive and
negative variation functions of g. Then we can define

[ fda, =] fda;—[ fda; =] fdup—] fdp .
If [ fdue+ [ fdu, isnotof the form too+(—o )or —oo-+(+a0), e can define
[_td A= fdag +[ fdAg =] fdup+] fduy .

Suppose g is absolutely continuous. Then assuming that jE frd s, —jE fdu,
and | fdsu, —[_f d,are not of the form +oo—(+e0 ), we have that
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[ fda, =] fg'dm and [ fd|3,|=[ fdu, =[ fv,/dm=] f|g’|dm.

Theorem 27. Suppose g:1 — R is an increasing bounded function. Then the
Lebesgue Stieltjes measure 4, is a finite positive Borel measure. Suppose

f :1 - R is a continuous function on the closed and bounded interval [a, b],
where a<band a,bel. Then fis Lebesgue-Stieltjes integrable on [a, b] and
there exists c e[a,b] such that

ﬁ“%=ﬂﬂ&@%g@»

Proof. If g is a constant function, or g, (b) =g_(a) then we have nothing to
prove, for we can just take any c in [a, b].

Now we assume that g (b) > g_(a). Since f is continuous on [a, b], f is Borel on

[a, b], it follows by a standard argument that f is Lebesgue-Stieltjes integrable
on [a, b]. Since fis continuous on [a, b], there exists M and m such that

m< f(x)<M forall xin [a, b]. Therefore, med/,zgsj: fdygSI:Mdﬂg. Now,

b
fd
4, ([a,b])=9,(b)—g_(a) and so m< L—ﬂg <M . Therefore, by the

9,(0)-g_(a)
Intermediate VValue Theorem, there exists c in [a, b] such that
J, 1d, .
—2_— = f(c). This completes the proof.
9,(b)-9_(a)

Theorem 28. Suppose g:1 — R is an increasing bounded function and I is an
open interval. Suppose a<b and a,bel. Suppose f:[a,b]— R isa Lebesgue
Stieltjes integrable function with respect to the Lebesgue Stieltjes measure ;.

Suppose f is bounded on [a, b]. Define for x in [a,b], F(x):j: fdg,.

(i) If g is continuous at c in [a, b], F is continuous at c.

(it) If g is continuous in [a, b] or in a neighbourhood of ¢ in [a, b] and is
differentiable at ¢ and f is continuous at c, then F is differentiable at ¢ and
F'(c)=f(c)g'(c).

Proof.

(i) Suppose x,cela,b], c<b and x>c. F(X)—F(C):chfdyg. Therefore,
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FOO-FO|=|[ f dg

<[7If]du, -

Since f is bounded, there exists M > 0 such that | f (x)| <M for all xin [a, b]. It
follows that

[F(x)-F(c)|< f Md 24, =M g4, ([c, X]) = M (9. (X) = 9_(C)) --====-====-=- (1)
Therefore,
lim|F(x) - F(c)| <M (g.(c)-9.(c)).
It follows that if g is continuous at c, then Ixi£1’c1|F(x)— F(c)|=0.

Hence, if ¢ = a and g is continuous at ¢, then F is continuous at c.

Similarly, we can show that if x,ce[a,b], c>a and x<c,

[FO)-F @] < [ My =M, (Ix,c1) =M(g.(c) -9 (x)

It follows that lxigc‘“:(x)_ F(c) <M (g,(c)-g_(c)). Therefore, if g is continuous at
c, then Iig1|F(x)— F(c)|=0. It follows that if c =b and g is continuous at c, then

F is continuous at c. Moreover if a<c<b and g is continuous at c, then
Ii;n|F(x)— F(c)|= Ii\an|F(x)—F(c)| =0. Therefore, F is continuous at c. This proves

part (i).
(i)
Suppose a<c<b. Suppose x>c and xe[a,b]. Let m =inf{f(x):xe[c,x]} and
M, =inf{f(x):xe[c,x]}. Then we have
[mdu, <[ fdu, <[ M duy, .
Therefore, there exists m, <L <M, such that
[7fduy = Ly (e XD = L (9,0~ 9.(0)) -

Therefore,

_— = ImLX m
X\ X—C xXN¢  X—C X\ x\uC X—C

im9:0-0.© ___________ (2)
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Since f is continuous at c, limL, = f(c). As g is differentiable at ¢ and

continuous in a neighbourhood of c,

lim g+(X)_g_(C) =lim g+(X)_g(C) =lim g(X)_g(C)
xe X—C X X—C xxe  X—C

=9'(c).

Hence, mw = f(c)g'(c). Similarly, we can show that

ii;ng £(0)g'(c) . It follows that F'(c) = f(¢)g'(c).

Integration by Parts

The next result is a technical result that we shall use to prove a version of the
integration by parts theorem.

Theorem 29. Suppose u: &((a, b)) — [0, ) and v: &((a, b)) — [0, ) are
two finite Borel measures define on the Borel c-algebra generated by the open
sets of the open interval (a, b). Define for x € (a, b),

f(x):%(,u((a, x])+ 1((a,x))) and

9(x) :%(v((a, x1)+v((@ ).

Then j(a’b) f dv+'|.(ayb)gd,uzu((a,b))v((a,b)) .

Proof. Note that both .((a,x]) and ((a,x)) are increasing and non-negative.

Therefore, they are Borel measurable and bounded since g is finite. Similarly,
v((a,x]) and v((a,x)) are Borel measurable bounded increasing functions.

Let E={(x,y)e(ab)x(a,b):x>y}. Foreach xe(a,b), let E ={ye(a,b):(x,y)cE}
and for each ye(a,b), let EY ={xe(a,b):(x,y)eE}. By Theorem 8 of Product

Measure and Fubini’s Theorem,
SV (BN u() = u(E)dv(y)(= pxV(E)). -mrmmmmmmmemmmememenes (1)

Observe that EY ={xe(a,b):(x,y) eE} ={xe(a,b): x>y} =[y,b) and
E, ={ye(ab):(x,y)eE}={ye(ab):xx>y}=(a,x].
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It follows from (1) that
Jiuo (@D =] a([y.D))dv(y). =memmemmememmemnenes (2)

For a<y<b, (a,b)=(a y)uU[y,b) and so
H1(E”) = u([y,b)) = u((@b))-u((ay)) -

Thus, [ w@y.)dviy)=]  w(@b)dv(y)-]  w(@ y)dv(y)

= u((@b)v((a, b))_j(a,b) p((a, y)dv(y) . -=---mmn----- (3)
Therefore,
La,b) v((a x])du(x) = La,m Ly, b))dv(y) = p((ab))v((ab))- v[(a,b) u((a, y))dv(y)
and so

Jio v (@XDAL() + [ (@ y)dv(y) = u((@ D) ((@,b)) . =mwmmemmme- 4)

Interchanging the role of «and v, we get from (4),

(@ yDdv(y)+ ] v(@x)du(x) = u(@b)v((@b)). ==-=mwm-me-=- (5)

(ab)

Thus, from (4) and (5), we obtain,

= (1@ V) + (@) AV + [ (@ XD +v(@ X)) d () = (@) (a.)).

2J@n

We note that (a, b) may be unbounded, i.e., (a, b) may be
(—o0,b) or (a,+w) or (—oo,+0) .

This completes the proof of Theorem 29.

We have a similar result when the domain is a closed and bounded interval.

Theorem 30. Suppose u: &([a, b]) — [0, ) and v: &([a, b]) — [0, «) are
two finite Borel measures define on the Borel sets of [a, b]. Define for x € [a,
b],

f(x)=%(/¢([a, x])+ u([a,x))) and
g(x) = %(v([a, x])+v([a,%))).

Then j[a’b] fdv+ j[a’b] gd = u([a,b])v([ab]) .
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Proof. The proof is similar to that for Theorem 29.

Let E={(x,y) e[a,b]x[ab]:x>y}. Foreach xe[a,b], let
E, ={yelabl:(x,y)eE}=[a,x]

and for each ye[a,b],

let EY ={xe[a,b]:(x,y)eE}=[y,b]. By Theorem 8 of Product Measure

and Fubini’s Theorem,
JuoV (EuO) = [ #(EN)AV(Y)(= pxV(E)). -mrmrmrmememsmemeneees (1)
It follows from (1) that
Juowy (@A) = [y, DDAV(Y) . =mmemmmmememmemennes (2)
For a<y<b, [a,b]=[a,y)uU[y,b] and so
= p([y.b]) = pe([a.b]) - p([2.y)) -

Thus, | w(y.bDdvy)=[ w(abddv(y)-[ w2 y)dv(y)

= u([a by ([ab])~ [ w((a y)dv(y). --mw-wmeeees (3)
Therefore,

[, (@X)duC =] p(y.bDdv(y) = s(la,bDv ([a.b])- | u(la, y)dv(y)

[a,b]

and so

[l (@XDL0)+ [ pa(la, y)dv(y) = u(la,bDv ([a,b]) . =-=m-m-=me--- (4)
Interchanging the role of zand v, we get from (4),

Lo (@YD) + [ v(Ta,0)du(x) = u(a,bl)v([a,b]) . ------------ (5)

Thus, from (4) and (5), we obtain,

o (@) + (3 ) v+ [ (02X + (T, ) d () = uCa.bD v ([, b1).

2 Jlab]
This completes the proof of Theorem 30.

Remark. Theorem 30 holds if [a,b] = (—o0,b] or [a, +) or (-0, +x) .
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The next theorem is a key result towards formulating an integration by parts
formula.

Theorem 31. Let | be an open interval. Let u,veBV(l). Then for any interval
(ab)ct,

V,+V
2

u, +u
~dA, + I
J.(a,b) 2\/ (a,b)

5 d4, =u_(b)v_(b)-u,(a)v,(a).

In particular, if there are no points in (a, b) at which both u and v are
discontinuous, then

J, WA+ vdd, =u ) (b)-u, @V, (a).

Proof.

We shall prove the first part of the theorem when u,ve BV (l) are increasing
functions.

Suppose u and v are increasing bounded functions on I. Then we have the
associated Lebesgue Stieltjes measures, x4, : (1) — [0, «) and g, : &(l) - [0,

o) are two finite Radon measures. Suppose a8, b € landa <b. For a<x<b, by
Theorem 5, 4 ((a,X])=u,(x)-u, (@), x,((ax)=u_(x)-u,(a),

/’lv((a’ X]):V+(X)_V+(a) ) and /u\/((a’ X)):Vf(x)_v+(a) '

By Theorem 29,

(000U @400 -u @)d 00+ 3 [ (v,00 -V, (@) +V () -V, (@)d 4,9

= u,((a ), ((a,b))=(u_(b)—u.(a))(v_(b) -v.(a)).

Hence,

% (a,b>(u+(x)+u‘(x))dﬂV(X)+%J.<a,b)(v+(x)+V_(X))dﬂu (X)

=(u(b)-u,(@))(v_(b) -V, (a))+u, (@) 4 (a,b)+v,(a) 4, (a,b)
=(v_(b) -V, (a))u_(b) +V. (@) 14, (a b) =(v_(b) —v, (a) )u_(b) +(u_(b) —u, () )v, ()
=u_(b)v_(b) -u,(a)v,(a).

This proves the first part of the theorem when u and v are increasing.
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In general, we write u=P,-N, and v=P,—N,, where P,,P, andN,, N, are the
positive and negative variation functions of u and v respectively.

By the case for increasing functions, as positive and negative variation functions
of a function of bounded variation are increasing, we have:

j(a.m%“% " La,b)%ﬂa =P, (b)P,_(b)-P,, (@)R, (a), --=========---- (1)
I(ab)@dﬂh‘v +.[(a,b)%ﬂa =P,_(b)N,_(b)-P, (@)N,, (@), ---=----=---- (2)
I(a b) wdﬂ% * (a,b)%ﬂwu =P_(b)N,_ (b)-P,(a)N,, (a), -------------- (3)
And
J.(a b) e er = Hh, +J.(a,b)wdﬂwu =N,_(b)N,_(b)-N,, (@)N,, (@) ---------- (4)

Subtracting (2) from (1), we obtain,

I:)u+ F:[J— Pv+ — Nv+ I:)v— — Nv—
J-(a,b) Z (d‘Lva —duy, )+J‘(a,b) ; d ity

=R_(O)(R-(®-N, (0)-R.(@(R.(@-N,.(@)=R_(bV_(b)-PR,, (Q)v.(a).

Thus, | g +P‘" dA, + f(ab) V*dﬂpu=Pu_(b)v_(b)—Pu+(a)v+(a). -------------- (5)

(a,b)

Subtracting (4) from (3) we get:

N, + N,
La b);

2 (dﬂPv_dﬂNv)+.[ P\/+_Nv++R/—_N

(a,b) 2 V7d'uNu
=N, (0)(P_(b)-N, (0))-N,. (@)(R,@-N, (@)=N, (b)v.(b)) =N, (v, (a).

N,, +N

Hence, [ = =dd + [ B2 duy, =N, (0 (0)-N,, (a)v, (). - (6)

(5) — (6) gives:

J.(a b)

vV, +V_

(d,upu _d/uNu )

(a,b)

=(R-(®-N,_(0))v_(b)-v.(@)(R. (@) —N,,(a)).

Therefore, f

b ,=u_(b)v_(b)-u.(a)v, (a).
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This proves the first part of the theorem.

Suppose there are no points in (a, b) where u and v are both discontinuous.
Note that since u and v are of bounded variation on (a, b), points of
discontinuities of u and v are at most countable. Let S be the points of
discontinuities of u in (a, b). Then v is continuous at all points in S. Therefore,
A4,(8)=0 and

I(a,b) = —ZHJ_ dﬂ" - .[(a,b)—s = —ZHJ_ dﬂ" - I(a,b)—s UCMV - -[(a,b) Udﬂv )

Similarly, we can deduce that

[ B%da=[ vda,.
@ 2 (@b)

Hence, j(a’b) udA, + .[(ayb)vdiu =u_(b)v_(b)—u, (a)v, (a).

This completes the proof of Theorem 31.

In general, u and v may have common points of discontinuities, then we shall
have a correction term for the integration by parts formula.

Since the points of discontinuities of u and v are at most countable, the formula
for singleton sets will be useful, for instance, at the end points of a Borel set,
where the integral is to be taken.

Forany xel , J.{X}ud/iV =u(x)4, ({x})=u (v, (x)-v_(x) ,
J.{X}vdﬂU =V(X)4, ({x})=v(x) (u, () —u_(x))and A, ({x})=u, (})v, (x) —u_(V_(x).
Therefore,

I{X}udﬂv + .[{X}vdﬂu =2 ({X}) =U)A, ({x}) + V)4, ({x}) = (u, (V. (X) ~u_(x)v_(x))

=u()A, ({x})+v(02, ({x}) = (w004, ({x}) +u, COV_ () +v_ (04, ({x}) ~u. (OV_(x))

=(U0)—u, (9) A ({x}) +(v0) =V () 4 ({x})-
Also,
oo U2, + [ v A, =, ({x}) = (W00 —u_ () U () =, (9) 4, ({x}) +(v(X) +V. () =V, () =v_(x)) 4, ({x})
= (09 —u-09) & ({x}) = A ({x}) A (X} + (00 v, (0) A ({x4)+ 4 ({x1) 4 ({x})
= (U0 = 09) A, ({x})+ (V09 =V, (9) & ({x}).
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It follows that
2( f,udA,+ ] vdd, -4, ({x}))
=(2u(x)—u, (X)—u_(x)) 4, ({x})+(2v(x) —Vv, (X)—V_(X)) 4, ({x}) :
Therefore,

_[{X}ud A+ Lx}vd A =

:(u<x>—§(u+<x>+u_<x>)]ﬂv({x})+(v<x)—§(v+<x>+v_<x>)j% ({x})+ A ({x})

Thus, we have proved the following:

Theorem 32. Let | be an open interval. Let u,veBV(l). Then forany xel,
I{X}Ud% +J-{X}vd/1u =

:(u<x>—§(u+<x>+u_<x>)]ﬂv({x})+[v<x)—§(v+<x>+v_<x>)]% () + 4w (£}).

Theorem 33. Let | be an open interval. Let u,veBV(l). Then for any interval
(ab)ct,

.[(a,b) udA, + .[(a,b) vd4,

=ﬂw((a,b))+Z(u(x)—%(u+<x>+u_(x>)jﬂv({x})+Z[v(x)—%(vxx)w_(x))]% ({x}),

xeD xeD

where D ={xe(a,b):u and v are discontinuous at x.} .
Proof. Let s, , S, be the sets of discontinuities in (a, b) of u and v respectively.

Let D=S,nS, and T=S,-D. Then T is at most countable and v is continuous
atall pointsin T.

u U u +u ~
I(a,b)—D 2 d4, = J.(a,b)—D—T 2 d4, = I(a,b)—D—T ud4, = .[(a,bHJUd/qv !

since A,(T)=0.

V, 4V

Similarly, we can show that j(ab)_D >

dA, = j(a]b)_Dvdﬂ“ .

Therefore,
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U+U

J'V+V

.[(ayb)iDvdﬂu+ da, + j udﬂv.[

= BTTaa4]  STda,
(ab) 2 @b) 2

=u_(b)v_(b) -u, (a)v, (a),

by Theorem 31.
Thus,

V+V J'U+LI

I(a,b)—DVdﬂ“ + J.(a’b),D udA4, =u_(b)v_(b)-u, (a)v,(a) —I
Therefore,
Lavb)Vdi“ +-[<avb) ud4, = I(a,b)fDVdﬂ““ +J‘(a,b)—D ud2, +.|.DV(MU +J-D ud4,

u, +u

= 4. (@ b)) j”v A=l

—d A, +IDvd/1u+.[Dud/1V

= A ((@,b))+ Z(u(x) —%(u+(x) +u_(x))jﬂw ({x})+ Z(v(x) —%(v+(x) +v_(x))}1u ({x})

xeD xeD

This completes the proof of Theorem 33.

Remark 34.
With notation as in Theorem 33, by Theorem 32,

Z(u(x) —%(u+(x) +u_(x))j/y ({x})+ Z(v(x) —%(v+(x) +v_(x))}1N ({x})

_Z(J.{}ud/iv+'|.{}vd/1“ 24 ) [ udA,+[ vd4, ~4,,(D).
It follows that

J‘(a,b)—DVdﬂ“u +J.(a,b)—D ud, =4, ((a’b))_ﬂ“uv(D) = A, ((a, b)— D)_

From Theorem 32 and Theorem 33, we have the following variation of
Theorem 33.

Theorem 35. Let | be an open interval. Let u,veBV(l). Then foranya<bin
l,
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I[a,b) udA, + J[a,b) vd A

~2 () T, (u09-3 (0.0 +u 09) ] (1)

xeDW{a}

- ¥ (v-3 (00 )4 (1)

xeDU{a}

j‘(a’b]ud/lV + j(a’b]vdﬂ

~ A (@b)+ Y [u(x)—%(u+(x>+u_(x>>]ﬂv({x})

xeDU{b}

+ 2 (V(X)—E (v, () +Vv. (X))jﬂu({x}) and

xeDA{b}

J.[a,b] Ud AV + J.[a,b] Vd

A (ab)+ Y (u(X)—%(u+(x)+u(x))jﬂv({x})

xeD{a,b}

+ 3 (w0200 )4 (1),

xeDuw{a,b}

where D ={xe(a,b):u and v are discontinuous at x.} .

Remark. If I is a closed and bounded interval, | =[a,b] and u,ve BV ([a,b]),
then we can use Theorem 30 to deduce the following,

J' U +U_ ﬂv J'
[a,b] [a,b]

and that j[ab]udﬂV +J'[ab]vd

=u, (b)v, (b)-u_(a)v_(a),

. b0)+ 3009 -3 (0.6 +u 09) 4 (1)
+Z(v(x) —%(w(x) +v(x))]/1u ({x}).
where D ={xe[a,b]:u and v are discontinuous at X.} .

Corollary 36. Let | be an open interval. Let uveBV(l) anda<bbeinl. Let
D ={xe(a,b):u and v are discontinuous at x.}
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(@) If D is empty or if u(x)=%(u+(x)+u(x)) and v(x)=%(v+(x)+v(x))for all xin
D, then j(ayb)ud/iv + I(a‘b)vdﬂu =, ((@b)).
(b) If u and v are continuous on the right at all points of D, then

J.(a'b)udﬂvﬂ-(a’b)vdlu:/l (@b))+X 4, ({x}) A ({x}).

xeD

(c) If uand v are continuous on the left at all points of D, then
.[(a'b)udﬂv +J'(ayb)vdﬂu =, ((a,b)) ZA (x4, ({x}).-

(d) If the function w: 1 — R is continuously differentiable in I and with compact
support in I andve BV (1), then | vwdy+ [ wd4, =0.

Proof.
Parts (a), (b) and (c) follow from Theorem 33.

Suppose w is continuously differentiable with compact support. Then the
support of wis a closed setin I and | is open and so it is a closed set contained
in an open interval, say, (a, b), in I. Then by continuity of w and the
compactness of the support of w, |w'|< K, for some K > 0. It follows by the

Mean Value Theorem, that w is Lipschitz with constant K. Hence, w is
absolutely continuous. By Theorem 33, j(a ) vd A, +j(a ) wd4, =0 since

w,(a)=w_(b)=0. Since w is absolutely continuous, j(a b)vd/1w = j(a ) vyw'dx. Now,

Li(a b)vdlW =0 since 4,(l1 —(a,b)) =0 and W'(x) =0 for xe | —(a,b), we have that
L vw’dx+J'I wdA, =0.

Remark 37.

Suppose | is an open interval. Theorem 31 and Theorem 33 hold when the
domain of the integral is taken to be the whole of I. If I =(c,d), then we can

take a sequence of nested intervals, {(a,,b,)}, with a,,b, (c,d),a, <b, such that
a, \vc and b, /" d. Apply the theorems with (a,b)=(a,,b ) and take limits.

The same argument applies when | = (—o0,d) or (c,+%) or (—oo,+x) .
Thus, we have that for an open interval | and u,ve BV (l),
.L ud4, +_|.I vd 4,
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=2 (1 )+Z(u(x)—%(u+(x)+u(x))jﬂV ({x})+ Z(v(x)—%(w(xﬂv(x))jﬂ11 ({x}),

xeD xeD

where D= {xel:uandv are discontinuous at .} .

Change of Variable

We shall next present several versions of a change of variable theorem for
Lebesgue Stieltjes integral.

Firstly, we introduce the notion of a generalized inverse of an increasing
function. We introduce the two most common types of inverse. We shall use
both of them, but give more elaboration to the left continuous inverse.

Definition 38.

Suppose | is an interval and g:1 — Ris an increasing function. Let J be the
smallest interval containing the image of g, g(1).

If the interval I is bounded from below, then we define the generalized inverse
viJ >R by v(y)=inf{xel:g(x)>y} foryinJ. Note that since the interval I is

bounded from below, vis well defined and does not take the value —oo.

If the interval I is bounded from above, then we define the generalized inverse
n:J —>R by n(y)=sup{xel:g(x)<y} foryinJ. Likewise, since the interval | is

bounded from above, 7 is well defined and does not take the value .

Properties of the inverses v, 7.

Proposition 39. Suppose 1 is an interval bounded from below and g:1 — Ris an

increasing function. Let J be the smallest interval containing the image of g,
g(l). Let v:J >R be defined by v(y)=inf{xel:g(x)>y} foryinJ.

(i) vis an increasing left continuous function on J,

(if) v has a discontinuity jump at some point y, e J —supg(l) if, and only if,
g(x) =y, forall x in some interval (x,x,)c 1 with x <x,,

(iif) v(g(x)) <x forevery xin l. v(g(x))<xif, and only if, g is constant on some
closed interval, [z,x]c | with z<x ,
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(iv) v(y)=x, for all y in some open interval (y,,y,)<J with y, <y,and for some
x, in the interior of I if, and only if, g has a discontinuity jump at x, and

(Y1, ¥5) <(9_(%), 9, (%)) - In particular, if g is strictly increasing, then vis a left
inverse of g and is continuous.

(v) Forany yeJ, g (v(y)<y<g,(v(y)).
Proof.

(i) Take y,,y,eJ with y, <y, . Then {xel:g(x)2y,} ={xel:g(x)>y,}and so
inf {xel:g(x)2y,}<inf{xel:g(x)2y,}. Itfollows that

v(y,) =inf{xel:g(x)2y,} <inf{xel:g(x)>y,}=v(y,). Hence, visan increasing
function on J.

Now we shall show that vis left continuous. Take y,eJ. If y,=inf g(l)=infJ,
then we have nothing to prove. Assume now vy, >inf g(I)=inf J .

v(y,) =inf{xel:g(x)>y,}. Notethatif ze{xel:g(x)>y,}, then
zzinf{xel:g(X)2Yy,} =Vv(y,). Thus,

if zelandz<v(y,) ,then g(z)<y,.  --=-=m=mmmmmmmmmmmmeee- (1)
We note that
forany zel, v(g(z2)) <z, —-----=--=m-mm=mmmmmmmmmmme e (2)
since v(g(2))=inf{xel:g(x)>g(z)} and ze{xel:g(x)>g(2)}.

If z<v(y,) and g(z)>y,, then z>v(g(z))=v(y,) contradicting z<v(y,). This
proves assertion (1) above.

Take any £>0. Since y, >inf g(1)=inf J, there exists ze | such that

g(z)<y,. If v(g(z))=v(y,), then v is constant on [g(z),y,] and so vis left
continuous at y,. We now assume that v is not left constant at some left
neighbourhood of y, . Therefore, we may assume that v(g(z)) <v(y,) for all
g(z)<y,. Thatisto say, v(y,)>infl. Then I n[v(y,)—&,v(y,)) =< .

Take a point z, e I n[v(y,)—&,v(Y,)). Thus, since v(y,)—¢e<z,<V(y,), by (1),
9(z,)<Y,. Forany ye(g(z)Y,), v(y)=inf{xel:g(x)=y} >z, . This is because
if v(y) <z, , then there exists x, <z, such that g(x,)>yand so y<g(x,) <9(z,),
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contradicting y > g(z,). It follows that v(y,) >v(y) >z, >v(y,)—¢. This means
that vis left continuous at vy, .

(if) Suppose v has a discontinuity jump at y, e J —supg(l)=J —supJ . By part (i)
the discontinuity jump at y, must be a right jump, i.e., v(y,) <v,(y,). Now recall
that v(y,)=inf{xel:g(x)=y,}. If zel and z>v(y,), then g(z)>y, . We
deduce this as follows. z>v(y,) implies that there exists x, e {xe1:g(x) > y,}
such that x, <z and g(x,)>vy,. Thus, g(z)>g(x,)>Y,. Forany xin Isuch that
v(y,) <x<v,(y,), forall y>vy, , v(y)>v, (y,)>x since v is increasing. Therefore,
by (1), g(x)<y. Itfollowsthat g(x)<vy,. Since x>v(y,), g(x)>y,. It follows
that g(x) =y, for all xe(v(y,),v,(y,)). Take x =v(y,) andx, =V, (Y,).

Conversely, suppose g(x) =y, in some interval (x,x,)c 1 with x, <x,. Then

V(y,)=inf{xel:g(x)2y,} <x as (x,x)={xel:g(x)=y,}. If ye(y,supJ),then
for every xe(x,x,) , we have that g(x)=y, <y and so

v(y)=inf{xel:g(x)>y}>x.

We deduce this as follows. If v(y)<x for xe(x,x,), then there exists

X, €{xel:g(x)>y}such that x, <x and g(x,) > y. Thus, v(y)<x,<x and
y<g(x,)<g(x)=y,, contradicting y>y,. It follows that v(y)>x for all

X € (x,%,) and so v(y)>x,. This means v(y)>x,for all ye(y,,supJ). Taking the
limitas y \vy,, we have that v _(y,)>x,. Hence, v(y,) <x <x, <v (y,). It
follows that v has a jump discontinuity at y, .

(iii) Forevery xel , v(g()=inf{zel:g(z)>g(x)}<x,as xe{zel:g(2)=g(X)}.

Suppose v(g(x)) < x for some x 1. Then there exists x, e{ze1:9(z) = g(x)} such

that x, <x and g(x,) >g(x). Since g is increasing, g(x,)=g(x) and g is constant

on [x,,x]< | . Conversely, suppose g is constant on [z,x]c |, with z<x. Then
vg(x))<z as [z,xlc{yel:g(y)=g(x)}. Itfollows that v(g(x))<x.

(iv) Suppose v is constant in some open interval (y,,y,) < J with v(y)=x, for all
yin (y,,y,) and for some x, in the interior of I.

Note that if z>x, =v(y), then g(z)>y. -------n-mm-mmmmaev ©)
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This is because there exists z, e{xel:g(x)>y} such that z, <z so that

9(z) > g(z,) = y. This means that for any z>x,=v(y) and for ally e (y,,v,),
g(z)>y. Therefore, forany z>x,, g(z)>y,. Thus, taking limitas z \ x,, we
obtain g,(x,)>Y,. Onthe other hand, if z<x,=v(y), then by (1), g(z)<y.
Thus, for any z < x,and forany ye(y,,y,), 9(z)<y. It follows that g(z)<y,.
Now, letting z ./ x, , we deduce that g_(x,)<vy,. Hence g_(x,) <y, <V, <9.(%,).
This means (y,,y,) =(9.(%).9.(%)) and g has a jump discontinuity at x,.

Conversely, suppose g has a jump discontinuity at x, for some x, in the interior
of I, that isto say, g_(x,)<g,(x,). Takeany ye(g_(x,).9.(x)). Then v(y)>x,.
This is because if v(y) <x,, then there exists z, e {xe1:g(x) >y} with z, <x, SO
that y<g(z,) <g_(x,), contradicting that y>g_(x,). Thus, forall x>x,, sincev
IS increasing, together with part (iii) we get,

v(y) <v(9. (%)) <v(g())<x.
Hence, v(y)<x,. Therefore, v(y)=x, forall ye(g_(x,),9,(x,))-

Suppose now g is strictly increasing. By part (i), v is increasing and left
continuous. By part (ii), v cannot have a right jump in J—supJ. If supJeJ,

then plainly v is continuous at supJ. Hence wvis continuous in J. By part (iii),
v(g(x)) =x forall x in I, since g is non-constant in any subinterval of I. Thus, v
Is a left inverse of g.

(v) By definition, v(y)=inf{xel:g(x)=y}, so for any x>v(y), there exists z<|
such that z<x and g(z) >y so that g(x)>y. Therefore,g,(v(y))>y. We have
shown that if z<v(y), then g(z)<y. (See (1).) Hence, g (v(y))<y. It follows

that g (v(y))<y<g,(v(y)).

This completes the proof of Proposition 39.

We now state the corresponding result for the other generalized inverse 7.

Proposition 40. Suppose 1 is an interval bounded from above and g:1 —» Ris an

increasing function. Let J be the smallest interval containing the image of g,
g(l). Letr:J — R be defined by #7(y) =sup{xel:g(x)<y} foryinJ.

(i) nisan increasing right continuous function on J,
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(if) 7 has a discontinuity jump at some point y, € J —inf g(1) if, and only if,
g(x) =y, forall x in some interval (x,x,)c1 with x <x,,

(il1) n(g(x))>x forevery xin l. n(g(x))>xif, and only if, g is constant on some
closed interval, [x,z]c | with x<z ,

(iv) n(y)=x, for all y in some open interval (y,,y,)<J with y, <y,and for some
x, in the interior of I if, and only if, g has a discontinuity jump at x, and

(Vi ¥2) =(9-(%), 9, (%)) - In particular, if g is strictly increasing, then 7 is a left
inverse of g and is continuous.

(v) Forany yed , g (m(y)<y<g,((y)) .

Proof.

The proof is similar to that of Proposition 39. Nevertheless, we shall present the
proof.

(i) Take y,,y,eJ with y, <y, . Then {xel:g(x)<y,}c{xel:g(x)<y,}and so
sup{xel:g(x)<y,}<sup{xel:g(x)<y,}. Itfollows that

n(y,) =sup{xel:g(x)<y,}<sup{xel:g(x)<y,}=n(y,). Hence, nisan increasing
function on J.

Now we shall show that 7 is right continuous. Take y,eJ. If

y, =supg(l)=supJ, then we have nothing to prove. Assume now

Yo <supg(l)=supJ. n(y,)=sup{xel:g(x)<y,}. Notethatif ze{xel:g(x) <y},
then z<sup{xel:g(x)<y,}=n(y,). Thus,

if zelandz>n(y,) , then g(z)>y,.  -------m-mmmmmmmmmmmmmeees (1)
We note that
forany zel, 7(g(2)) =z, ====-mmmmmmmmmmmmmm oo )
since 7(g(z)) =sup{xel:g(x)<g(z)} and ze{xel:g(x)<g(2)}.

If z>n(y,) and g(z) <y,, then z<n(g(z))<n(y,)contradicting z>n(y,). This
proves assertion (1) above.

Take any £>0. Since y, <supg(l)=supJ, there exists ze | such that

a9(2)>y,. If n(9(2))=n(y,), then » is constant on [y,,g(z)] and so vis right
continuous at y,. We now assume that 7 is not right constant at some right
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neighbourhood of y, . Therefore, we may assume that 7(g(z)) >n(y,) for all
g(z) >y,. Thatistosay, n(y,)<supl. Then I n(n(y,),n(y,)+&l= 2.

Take a point z, e I n((y,). 7(Y,) +€]. Since n(y,) <z, <n(y,)+¢, by (1),
9(z,)>Y,- Forany ye(y, d9(z,)), n(y)=sup{xel:g(x)<y}<z, . This is because
if n(y) >z, , then there exists x, >z, such that g(x,) <yand so y>g(x,)>g(z,),
contradicting y<g(z,). It follows that 5(y,) <n(y) <z, <n(y,)+¢. This means
that 7 is right continuous at y, .

(if) Note that if inf g(1)=infJ eJ, n is continuous at inf J by part (i).

Suppose 7 has a discontinuity jump at y,eJ —inf g(1)=J —inf J. By part (i), the
discontinuity jump at y, must be a left jump, i.e., n_(y,) <n(y,). Now recall that
n(Y,) =sup{xel:g(x)<y,}. If zel and z<n(y,), then g(z)<y, . We deduce
this as follows. z<#(y,) implies that there exists x, e {xe1:g(x)<y,} such that
X, >z and g(x,)<Yy,. Thus, g(z)<g(x,)<y,. Foranyxin I such that

n_(y,) <x<n(y,), forall y<vy, , n(y)<n_(y,) <x, since n is increasing.
Therefore, by (1), g(x)>vy, forall y<y,. It follows that g(x)>y,. Since
x<n(Y,), 9(x)<y,. Hence, g(x)=y, forall xe (. (y,),7(y,)). Take

¥, =1_(Y,) and x, =7(Y,) -

Conversely, suppose g(x) =y, in some interval (x,x,)c 1 with x, <x,. Then

n(Yo) =sup{xel:g(X) <y} 2%, aS (x,%)c={xel:g(X)<y,}. If ye(infl,y,) ,then

for every xe(x,x,) , we have that g(x)=y, >y and so
n(y)=sup{zel:g(z)<y}<x.

We deduce this as follows. If 7r(y)>x for xe(x,x,), then there exists

X, €{zel:g(z) <y}such that x,>x and g(x,)<y.Thus, 7(y)=x,>x and
y>g(%)>g(x)=Y,, contradicting y<y,. It follows that »(y)<x for all

X e (x,%,) and so n(y)<x. This means n(y)<x forall ye(infJ,y,). Taking the
limitas y.”"y,, we have that #» (y,)<x_. Hence, n (y,)<x <x, <n(y,). It
follows that 7 has a jump discontinuity at y, .

(iii) Forevery xel, n(g(x))=sup{zel:g(z)<g(X)}=x,as xe{zel:g(z)<g(x)}.

Suppose 7(g(x)) > x for some xe 1. Then there exists x, e{ze1:g(z) <g(x)}such
that x, >x and g(x,) <g(x). Since g is increasing, g(x,)=g(x) and g is constant
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on [x,x,]< 1 . Conversely, suppose g is constant on [x,z]c |, with z>x. Then
n(g(x)) >z as [x,zlc{yel:g(y)<g(x)}. Itfollows that n(g(x))>x.

(iv) Suppose 7 is constant in some open interval (y,,y,) =J with »(y)=x, for all
yin (y,y,) and for some x, in the interior of I.

Note that if z<x,=7(y), then g(z)<y. ----=--mmmmmmmmnn- (3)

This is because there exists z, e{xe1:g(x) <y} suchthat z,>z so that

g(z) <g(z,) <y. This means that for any z<x, =7(y) and for all y e (y,, y,),
g(z)<y. Therefore, forany z<x,, g(z)<y,. Thus, taking limitas z . x,, we
obtain g_(x,)<y,. Onthe other hand, if z>x, =7(y), then by (1), g(z)>y.
Thus, for any z > x,and forany ye(y,,v,), 9(z)>y. It follows that g(z)>y,.
Now, letting z v x, , we deduce that g, (x,)>y,. Hence g_(x)<y,<V,<9,(X)-
This means (y,,y,) =(9.(%).9.(%)) and g has a jump discontinuity at x,.

Conversely, suppose g has a jJump discontinuity at x, for some x, in the interior
of I, that isto say, g (x,)<g.(x). Takeany ye(g_(%) 9,(%)). Then n(y)<x,.
This is because if 7(y) > x,, then there exists z, e {xe1:g(x)<y}with z, > x; S0
that y>g(z,) > g, (x,), contradicting that y<g,(x,). Thus, forall x<x, , since
n is increasing, together with part (iii) we get,

n(y) 217(9_(%))=n(9(x)) > x.
Hence, 7(y)>x,. Therefore, n(y)=x, forall ye(g_(x,),9.(%))-
Suppose now g is strictly increasing. By part (i), 7 is increasing and right
continuous. By part (ii), 7 cannot have a left jump in J—infJ. Thus, 7 is

continuous in J—inf J. If inf J €J, then plainly, 7 is continuous at inf J . It
follows that 7 is continuous in J. By part (iii) 7(g(x))=x for all x in I since g is

non-constant in any subinterval of I. Thus, 7 is a left inverse of g.

(v) By definition, n(y)=sup{xel:g(x)<y}, so forany x<n(y), there exists
zel suchthat z>x and g(z)<y sothat g(x)<y. Therefore, g (n(y))<y. We
have shown that if z>7(y), then g(z) >y. Hence, g,(n(y))>y. It follows that

g (n(y)<y<g,.(m(y).
Remark 41.
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In Proposition 39 (iv) and Proposition 40 part (iv), we have required that the
generalised inverses, vand 77, take a value in the interior of the domain, I. This
IS not a necessary requirement.

For the various possible situation when r may take the value of the infimum or
the supremum of I, part (iv) actually holds.

For the definition of 7, we require that | be bounded above. If g:1 >R isan
increasing function, then J is the smallest interval containing g(l1). Note that J
need not be bounded. Suppose inf(g(1))=inf(J)¢J. Then either inf(J)=-wo0r
inf(J) > —oo. If inf(J)=—c0, then infl 1. If inf(J)> -, then either inf(J) e J or
inf(J)eJ .

We now assume that the interval | is bounded above.
Supremum of J.
(1) Suppose supl g1 .

If sup(g(1))=sup(J) ¢ J, then there does not exists y, € J such that n(y,)=sup! .
We deduce this as follows. Suppose

1(Y,) =sup{xel:g(x)<y,}=supl.

Then, forall xin I, x<n(y,) , 9(x)<y,. Hence, supg(l)=supJ <y,
contradicting supJ >y, .

If sup(g(1)) e g(1), then there exists x, 1 such that sup(g(1))=g(x,)=y,. Note
thatr(y,) =sup{xel:g(x)<y,}=supl >x,. Forall zel suchthat x,<z<supl, as
g is increasing, g(x,)=9(z) =y, for x, <z<supl. That s to say, g is constant on

[X,,supl).
(2) Suppose supl el .

Then sup(g(1))=sup(J)=g(supl)eJ. Let x,=supl . Then
Y, =supg(l)=supJ =g(x,) Since g is increasing.

Moreover n(y,) =sup{xel:g(X) <Y, } =X,

Suppose r(y)=x, forall y in (y,,y,] for some y, e Jwithy,<y.Forany zel,
z<x,=n(y) foranyyin (y,y,]. Then g(z)<y . Therefore, g(z)<y,. It
follows that g_(x,) <Yy, <y, =9d(x,). This shows that g is discontinuous at x, .
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Conversely, suppose g has a jump at x,. Thatis g_(x,)<Yy,=9(x,). Take yeJ
such that g (x,)<y<y,=9(x,). Forany zel , z<x, implies that
X =n(y)=17(9.(%))=n(g(z))=z . Letting z.”x, , we conclude that »(y) =x, for

all 'y e(g_(%), (%)= (9_(X,), YoI-
Infimum of J.

(3) Suppose infl=-w. Then as n(y)>-«, parts (1) to (2) cover the situation
whenn(y)=supl .

(4) Suppose inf 1 >—w .

If infg(1)=infJ ¢J,then inf(l)¢1.ForanyyeJ, y>infJso that there exist
x, € | such that y>g(x,) and so r(y)>x, >inf 1. Parts (1) to (2) cover the
situation whenz(y) =sup| .

If inf g(1)=inf J €J, then inf g(1)=g(inf 1) =inf J . Let x, =inf I andy, =g(x,).
Now, 7(y,) =m(9(%) = X%, - If 7(y,) =7(a(%,) > %,, then for xe 1 with x, <x<n(y,)
g(x)<y, and so g(x)=y, as g(x)>y,. That means g is constant on [x,,7(y,))
taking the value y,. Let n(y,)=z,. Then z,>x, . Moreover, g (z,)=Y,, if z,>x,
. Suppose now 7 is constant on [y,,y,) with y, <y, for some y, eJ and rn(y) =z,
forall yely,,y,). Forall z>z,=n(y)and any yely,,V,), 9(z) >y. Therefore,
g(z)>y,. Itfollows that g,(z,)>y,>y,=9_(z,). Hence, g is discontinuous at z,.
Conversely, suppose g is discontinuous at z,. l.e., g,(z,)>9 (z,) =Y, =infJ.
Then for all ye(g_(z).9,(z,)), n(y) <z,. This is because if 5(y) > z,, then there
exists x e{xel:g(x)<y}jwith x >z, so that y>g(x)=>g,(z), contradicting that
y<4g,(z,). Thus, forall x<z, , since nis increasing, we get,

n(y) 2n(9.(z,))2n(9(x)) = x. Hence, n(y)>z,. Therefore, n(y)=z, forall

ye (g_(zo), g+(20)).
Remark 42.

The situation with the extreme values of vin part (iv) of Proposition 39 is
elaborated as follows.

For the definition of v, we require that | be bounded below. If g:1 >R isan

increasing function, then J is the smallest interval containing g(I). Note that J
need not be bounded. Suppose sup(g(1))=sup(J)¢J. Then either sup(J)=o0r

sup(J) <oo. If sup(J)=oo, then supl el . If sup(d) <o, then either sup(J)eJor
sup(J) e J .
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We now assume that the interval | is bounded below.
Infimum of J
(1) Suppose inflel.
If inf(g(1))=inf(J) ¢ g(1), then inf(g(1)) ¢ 3. There does not exist y, € J such that
v(y,) =inf I . We deduce this as follows. Suppose
v(Y,) =inf{xel:g(x)>y,}=infl.
Then, forall xin I, x>v(y,) , g(x)>vy,. Hence, inf g(1)=inf J >y, contradicting

infJ<y, .

If inf(g(l)) e g(l), then there exists x, 1 such that inf(g(1))=g(x,) =y,. Note
that inf g(1)=inf J. Nowwv(y,)=inf{xel:g(x)>y,}=inf 1 <x,. Forall zel such
that x,>z>inf I, as g is increasing, g(x,)=9(z)=y, . Thatistosay, gis
constant on (inf I,x,]. Note that v(y,) 1.

(2) Suppose infl el
Then inf(g(1)) =inf(J)=g(inf1)eJ . Let x,=infl and y, =inf g(1)=infJ =g(x,).
Moreover v(y,)=inf{xel:g(x)>y,}=X,.

Suppose v(y)=x, forall yin [y,,y,) forsome y,eJ and y,>y,. Forany zel,
z>x,=v(y) foranyyin[y,y,). Then g(z)>y . Therefore, g(z)>y,. It
follows that g, (x,) >y, >V, =9(x,) . This shows that g is discontinuous at x, .

Conversely, suppose g has a jump at x,. Thatis, g,(x,)>Y,=9(x,). Take yeJ
such that y,=g(x,)<y<g,(x,). Forany zel , z>x, implies that
X <v(y)<v(9,(%))<v(g(2))<z . Letting z v x, , we conclude that v(y)=x, for

all ye[9(x,),9,(%) =¥, 9,(%)).

Supremum of J.

(3) Suppose supl = .

As v(y)<w, parts (1) to (2) cover the situation whenv(y)=inf 1 .
(4) Suppose now sup(l) < +o.

If supg(l)eg(l), then it follows that supg(l) ¢ J and that sup!l ¢ 1. As remark
above, for all yeJ, there exist x, 1 such that y<g(x,) and so v(y)<x, <supl .
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If supg(1) eg(l), then there exists x, e I such that g(x,) =supg(l)=supJ =y, and
SO V(Y,) <V(g(%,))<x%,. Thus, forall yeJ , v(y)<v(y,)<x,. If x,=suplel,and
if there exists y, e I with y, <y, such that for all ye(y,,y,], v(y)=x,. Then for
all zel with z<x,=v(y), g(z)<y and so g(z)<y,. It follows that

g_(x,) <y, <Y, =09(x,) and so g is discontinuous at x,. Conversely, suppose g is
discontinuous at x, =supl. That means g_(x,) <Y, =d(x,) . Now, for

ye(9-(%), 90%)], y<9(x) and so v(y)<x,. For z<x, , g(z)<g(x,) <y forall
ye(g_(%). 9(x,)]. Therefore, z<v(y) and so v(y)>x,. Hence, v(y)=x, for

ye(9.(%) 9(x)]-

Proposition 43. Suppose | is an open interval and g:1 — R is an increasing
function. Let «, 81 with a<p.

(i) Suppose I is bounded below.

Then a<v(y)<p if,and only if, g,(a)<y<g.(B). Inparticular, if g is also
right continuous, we have g(a) <y<g(B) < a<v(y)<A.

(if) Suppose I is bounded above.

Then a<n(y)<p if,andonlyif, g («)<y<g_ (B). In particular, if g is also left
continuous, we haveg(a) <y <g(B) < a<n(y)<p.

Proof.
We shall prove only part (i). Part (ii) is similarly proven.

If y>g, (a),then v(y)>a. Suppose on the contrary that v(y)<a. If v(y)<a,
then y<g(a)<g,(a), contradicting y>g, (a). If v(y)=a, thenforall zel,
z>v(y)=a, We have that g(z) >y and it follows that g, (v(y))=9,(a) >y,
contradicting y > g, (@). Hence, we must have v(y) > «.

Hence, v(y) <« implies that y<g, ().

If y<g.(a), then v(y)<a. This is because v(y) <v(g,(a)) <v(g(x)) < x for all
x>a, Since g and vare increasing and g(x)>g,(«). Therefore, v(y)<a.
Hence, y<g,(«) implies that v(y)<«.

It follows that v(y) >« implies that y> g, («) .

Therefore, for o, el with a<pg, g.(a)<y<g.(p) if,and only if a<v(y)<p.
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We are now ready to state and prove the various versions of change of variable
theorem.

Theorem 44. Suppose | is an open interval and g:1 — Ris an increasing
function. Let f:1 —[0,0) be a non-negative Borel function. Let a,be1 with
a<b .

(i) Suppose the interval I is bounded from below and g is right continuous.
Then

Jlo0y F00d2,00 =" £ ().

where y, is the Lebesgue Stieltjes measure generated by g and vis the
generalised inverse of g as defined in Definition 38.

(if) Suppose the interval I is bounded from above and g is left continuous.
Then

9(b)

o T2y =] F(y)dly,

9

where 4, is the Lebesgue Stieltjes measure generated by g and 7 is the
generalised inverse of g as defined in Definition 38.

Proof.
Part (i)

We shall prove the theorem for the case when f is the characteristic function of a
half-open and half-closed interval, («, 8] in | where a<p .

Let f=2,,.

If («, f]1~(a,b]=2, then La,b] FO0du, (0= 2 mdpt, () =0.

(a,b]

By Proposition 43, g(a)<y<g(b) if, and only if, a<v(y)<b . Therefore,

jgg(f: f(v(y))dy = jgg((:: L (V(¥))dy =0, since (@, Al (a,b]=. Hence the theorem

is true for these characteristic functions.

Suppose now (a, Bl (a,b]=@. Then (a, f1(a,b]=(s,t], where s=max{«,a}
and t =min{g,b}. Therefore,

o 10088, 00 =] 2000 =] 2,00 =00~ 9(6)

(a,b] (a,b]
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The last equality in the above statement is a consequence of the right continuity
of g.

Again, by Proposition 43, g(a) <y <g(b) if, and only if, a<v(y)<b, so that

o(b) 9(b)
.[g(a) Fv{y)dy = .[g(a) X (V(¥))dy = L Xis@romn Xa@.omdY

=min{g(b), g(f)}-max{g(a) g(a)}
=g(t)—g(s), since g is increasing.
b)

(
It follows that La,b] X9ty (X) = jgg(a) X (V(Y))dy.

Hence, the theorem is true for characteristic functions of a half open and half-
closed interval, («, ] in |.

Now we define two positive Radon measures as follows.

For any Borel set B in &(1), let

w®=[  700dg() and wm@)=[" z0)dy.

(a,b]

Then p, and u, are positive Borel measures on &(1) since | is an open interval,
by Corollary 4 of Product Measure and Fubbini’s Theorem, u, = u,. By
Theorem 3, y, and x, are Radon measures.

Therefore, the theorem holds when f is the characteristic function of a Borel set.
Hence, the theorem is true for any simple Borel function. By Theorem 16 of
Introduction to Measure Theory, there exists a monotone sequence of simple
Borel function {s .} converging to f pointwise. Therefore, by the Lebesgue

Monotone Convergence Theorem (see Theorem 23 of Introduction to Measure
Theory), [, s,09d, (0> [ £00ds, (0 and [*7s, (-(yay - [* f ().

Therefore, j(ab] f (x)d yg(x)zjgg((:)) f (v(y))dy. In particular, it follows that

g(b)

La’b]f(x)dﬂg(x)@o if, and only if, j f (v(y))dy < oo.

9(a)
Part (ii)
The proof is similar to part (i). We proceed analogously as in part (i) to deduce
that [ f(x)du, = jgg((b) f(n(y))dy for characteristic function of [«, 8). The proof

a)

then proceeds as in part (i).
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This completes the proof of Theorem 44.

Suppose f:1 — R isa Borel function. Then f*=max{f,0} and f =max{-f,0}
are Borel functionsand f =f*-f~. Wesay fis y, integrable over (a, b], if

j(ab] £ (x)d g, (X) - j(a o T (9dug (x) is not of the form (+0) ~(+<0). In view of

Theorem 44, if | is bounded below, fis x, integrable over (a, b] if, and only if,

f ov IS Lebesgue integrable over [g(a),g(b)] , whereas when | is bounded above,
fis u, integrable over [a,b) if, and only of, f.7 is Lebesgue integrable over

[9(a),g(b)].

We can now extend Theorem 44 to any Borel function f:1 > R.

Theorem 45. Suppose | is an open interval and g:1 — Ris an increasing
function. Let f:1 —» R be a Borel function. Let a,be !l with a<b .

(i) Suppose the interval | is bounded from below and g is right continuous.
Then

I(a,b] F(x)d () = Igg((:)) f(v(y)dy,

whenever j(a , F00d () or jgg((: f(v(y))dy exists finitely or infinitely, where g,

Is the Lebesgue Stieltjes measure generated by g and v is the generalised inverse
of g as defined in Definition 38.

(if) Suppose the interval | is bounded from above and g is left continuous. Then

flamy 0920 = I:((:)) f(m(y))dy,

whenever j[a ,, F0dsg () or jgg((:: f(n(y))dy exists finitely or infinitely, where g,

Is the Lebesgue Stieltjes measure generated by g and 7 is the generalised
inverse of g as defined in Definition 38.

Proof. Immediate from Theorem 44.

The next result is a more familiar version of the change of variable theorem.
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Theorem 46. Suppose | is an open interval bounded from below or bounded
from above and g:1 — Ris a continuous increasing function. Let f:R >R bea

Borel function. Then for a,be 1 with a<b ,

[ fogdu,(0=]"" t(y)dy
[a.b] 9 9(a) ’

whenever j[a , F2900d 4, (x) or jgg((:)) f (y)dy exists finitely or infinitely, where 4,
Is the Lebesgue Stieltjes measure generated by g.

If g is differentiable everywhere or is absolutely continuous, then
, )

iy Fo900-0/00d (0 =] " (y)dy

Proof. If the interval I is bounded below, by Theorem 45 part (i), we have
g(b)
Juuwy 2900000 =] " Foqv(y)ay.
As g is continuous, I[a,b] fog(x)dy, (x) = j(a’b] fog(x)d s, (x).
Since g is continuous, by Proposition 39, g(v(y)) =y, for all y in J so that
g(b) g(b)
[ foaMay=] f(ydy.
If the interval I is bounded above, by Theorem 45 part (ii), we have
g(b)
iy, Fo000dug = Fog0r(y)dy.
Since g is continuous, by Proposition 40, g(z(y))=y and so
g(b)
Juony o000y =]  fog(du, =] fy)dy.

If g is differentiable everywhere, then g is a Lusin function by Theorem 12 of
Absolutely Continuous Function on Arbitrary Domain and Function of Bounded
Variation. By Theorem 15 of Absolutely Continuous Function on Arbitrary
Domain and Function of Bounded Variation, g is absolutely continuous on the
interval [a, b]. By Theorem 26, if g is absolutely continuous, then

[l F2000d,00 =] 1 29(+9'()ax .

g(b)

Hence, j[ayb]fog(x)-g'(x)dx= [ F(y)dy.

g(a)
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The next result, with continuity condition on increasing g and differentiability
condition on an increasing function ¢ on the codomain of g, has a short and
elegant proof.

Theorem 47. Suppose | is an open interval bounded from below and g:1 »> Ris
a continuous increasing function. Let ¢:R — R be an increasing function,
which is differentiable everywhere on R. Let f:1 —» R be a Borel function.
Then for any Borel set B in &(1),

J, [ty = [, To(# = 0)dp,,
whenever any side of the equality exists finitely or infinitely,

Proof.

For any interval (a,b) with a,bel and a <D, since ¢og and ¢ are continuous,
by Theorem 7, u,.,((a,b)) =m(¢-g((a,b))) = m(s(g((a,b))) = 1, (9((a,b))). Since ¢ is
bounded on g([a,b]) and ¢ is differentiable everywhere on g([a,b]), by Theorem
15 of Absolutely Continuous Function on Arbitrary Domain and Function of

Bounded Variation, u,(g((a,b))) :jg«a . ¢'dm, where m is the Lebesgue measure

on R. Note that ¢’ is Borel. Since g is continuous and increasing, by Theorem
46,

Ig((a,b» ¢'dm = j(a,b) #'ogdu .

It follows that y¢og((a,b))=j(ab)¢'og du, . Therefore, 4, (E)=| ¢'-gdu, for

any Borel set E in &(1). Hence, for a Borel function f:1 —R , by Proposition
28 of Introduction to Measure Theory,

_[B fds,., =IB fe(¢'eg)du,-

This completes the proof of Theorem 47.

We now consider the Lebesgue Stieltjes measure generated by a composition of
two increasing functions, with or without continuity condition. We have a
result, which is similar to Theorem 44.

Theorem 48. Suppose | is an open interval and g: 1 — Ris an increasing
function. Let J be the smallest interval containing the range of g. Let ¢:J > R
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be an increasing function. Let f:1 —[0,%) be a non-negative Borel function.
Leta,b e lwitha<b.

(i) Suppose the interval I is bounded from below, g and ¢ are right continuous.

Then [ fdu,., =] fovdy,

9(a).g(b)]

where ., and u, are the respective Lebesgue Stieltjes measure generated by

#og and ¢ respectively and vis the generalised inverse of g as defined in
Definition 38.

(if) Suppose the interval | is bounded from above, g and ¢ are left continuous.

Then [ fdu,=] fondu,,

9(a).g(b))

where u,, and u, are the respective Lebesgue Stieltjes measure generated by

¢og and ¢ respectively and 7 is the generalised inverse of g as defined in
Definition 38.

Proof.
We shall prove only part (i). The proof of part (ii) is analogous.

We shall prove the theorem for the case when f is the characteristic function of a
half-open and half-closed interval, («,8] in |, where a< g .

Let f=yx.,-

If (@ f]n(abl=@, then [ fduy, =] 7 mdu,,=0.

By Proposition 43, g(a) <y <g(b) if, and only if, a<v(y)<b . Therefore,

= o = i b = .
I(g(a),g(b)]f vau, J(g(a),g(b)]z(“'ﬁ] vau, =0, since (@, f]N(a,b] =2

Hence the theorem is true for these characteristic functions.

Suppose now («, Sl (a,b]=<. Then («, f1n(a,b]=(s,t], where s =max{«,a}
and t =min{s,b}. Therefore,

Sy Tbg = [ oy 2@t = [ ZisnO g = HEE) - H(9(S)),

since ¢ g Is right continuous.

Again, by Proposition 43, g(a) <y <g(b) if, and only if, a<v(y)<b, so that
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fovdy = j ovd =j d
j(g(a),g(b)] Ho = Jgangon X Ho = Jgaraon Fo@ o1 X @ Hy

=] 4000y Ze@ o184 - SINCE @ is increasing,

=¢(g(t))—4(g(s)), as @ is right continuous.

It follows that j(a K8y =|

ovdu, .
(g(a).g() 2 (@ F] Hy

Hence, the theorem is true for characteristic functions of a half open and half-
closed interval, («,8] in|. It follows thatj(ab];(deM :j Ze ovdu, for any

(9(a).g(b)]
Borel set B in &(1).
Now we define two positive Radon measures as follows.

For any Borel set in &(1), let

m(B)=], 2oty and 1,(B)=

ovdu, .
(@001 % Hy

Then 4 and 1, are positive Borel measures on &(I), and since | is an open
interval, by Corollary 4 of Product Measure and Fubbini’s Theorem, 1, = p,.
By Theorem 3, 4 and x, are Radon measures.

Therefore, the theorem holds when f is the characteristic function of a Borel set.

It follows that the theorem holds for any simple Borel function. By Theorem 16
of Introduction to Measure Theory, there exists a monotone sequence of simple
Borel function {s } converging to f pointwise. Therefore, by the Lebesgue

Monotone Convergence Theorem (see Theorem 23 of Introduction to Measure
Theory), j 5,(X)d 2, (X) = j f(x)du,.,(x) and

S, ov(X)d g, (X) > fov(x)du,(x).

J.(El(él),g(b)] " J‘(g(a),(b)]

Therefore, I f(x) dyM( )= .[(g( a),(b)]

I(ab]f(x)dy¢g(x)<oo|f and only if, j(( oy F o008, (0 <0,

fov(x)dy,(x). In particular, it follows that

Corollary 49. Suppose | is an open interval and g:1 — R s an increasing
function. Let J be the smallest interval containing the range of g. Let ¢:J >R
be an increasing function. Let f:I — R be a Borel function. Leta, b € | with a
<bh.
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(i) Suppose the interval | is bounded from below, g and ¢ are right continuous.

Then [ fdu,, =] fovdu,.

g(a).g(b)]

(if) Suppose the interval | is bounded from above, g and ¢ are left continuous.

Then j[a‘b) fdu,, = j[ fondu,,

9(a).g(b))

Proof. This follows from Theorem 48.

Corollary 50. Suppose I is an open interval and g:1 — R s a continuous

increasing function. Let J be the smallest interval containing the range of g.
Let 4:J — Rbe an increasing function. Let f:R >R or f:J —>R be a Borel

function. Let a,be | with a<b.

(i) Suppose the interval | is bounded from below and ¢ is right continuous. Then

J.(a,b] Fogdu,, :I(g(a),g(b)] fd, .

(if) Suppose the interval | is bounded from above and ¢ is left continuous. Then

J-[a,b) Fogdu,, :Lg(a),g(b)) Fdu,.
Proof.
We prove part (i) only. Part (ii) is similarly proven.

By Corollary 49, j(a’b] fogdu,, = j( fogovdu,. Since g is continuous,

g(a).g(b)]

fogovdy¢=.[

fdu, .
(9(a).9(b)] Hy

fdu, . Therefore, .[(a,b] fogdu,, =L

J.(g(a),g(b)] 9(a).g(d)]

We now introduce the idea of using a measurable function and a measure space
to define a measure by taking the preimage of a measurable set.

Definition 51.

Suppose (X, 7#, 1) is a measure space. That is, 7Z is a o-algebra of subsets of X
and u: 7 — [0, o] is a positive measure. Suppose f:X >R isa7 -
measurable function. Define a collection s of subsets of R by
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S={ EcR:fE)e %}

Plainly, s is a o-algebra and contains every Borel set of R . Define the measure
uftonsby uf*(E)=u(f *(E)). Obviously, every Borel set of Ris 5 -
measurable or xf*-measurable, if we specify the measure w: 7 — [0, »]. on
X.

Theorem 52. Suppose f:X — R is a7-measurable function, where (X, 7, 1)
IS @ measure space. Suppose g:R — R is a Borel measurable functionon R .

Then IR gd (uf™) =IX g fd ., whenever any side of the equality exists.

Moreover, if B is a Borel set in R, then jB gd (yf‘l)zj go fdu

f(B)

Proof. Itisenough to prove the theorem when g is a non-negative Borel
measurable function. We note that for any Borel setE in R,

[ 2ed (et ) =pu(t7E)) =] xaedu=] zeofdu .

It follows that the theorem is true for any simple Borel measurable function.
Since g is a non-negative function, there exists a monotone sequence of Borel
simple function converging pointwise to g. Therefore, by the Lebesgue
Monotone Convergence Theorem, the theorem holds for a non-negative Borel
measurable function. In general, by writing g=g*—g~ , we see that whenever

IRg+d (,uf‘l)—jRg+d (1) is not of the form (+e0) - (+0), the right hand side
[ g7 fdu—[ g o fdu isalsonot of the form (+c)—(+) and vice versa.

Therefore,

Joud(uf )=, zo0d (1 *)=[ (925 f ds

=0 )z 8= [, (0 )21 )80= ., 9° .
We shall apply Theorem 52 to the next result.

Theorem 53. Suppose | is an open interval and g:1 — R is an increasing
function. Let J be the smallest interval containing the range of g. Let ¢:J >R
be an increasing function and f : 1 — R be a Borel function. Let B be any Borel
setin I.

(1) Suppose | is bounded from below and ¢ is right continuous. Then

o fdug =], . Tovdu,.
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In particular, fora, b € land a <b, j(a oy 0 :L vd p, .

9. (a).g, (b)]

(if) Suppose | is bounded from above and ¢ is left continuous. Then

jB fdu,., :J"fl(B) fondu,.

In particular, fora,b e landa<b, j[a’b) fd ., =j[ fondu,.

g_(a).g_(b))
Proof.
We shall prove only part (i). Part (ii) is analogously proven.

Leta,b e landa<b. Then
1., (@,b]) =(g-9), (b)—(4-9), (a) =¢(g, (b)) —4(g,(a)) ,

since ¢ s right continuous,
= 1,((9.(2),9,(0)]) =, (v"((a,b])) , by Proposition 43.
Since half-open and half-closed intervals generate the Borel algebra,
1y, (E) = 1, (v (E)),

for all Borel set E in &(I). Therefore, by Theorem 52, for any Borel set B in
&),

Jy fdug =] ., Tovdu,.

Hence, fora,b e landa<b, [ fdu, =], fovdu=[ fovdy,.

However, for strictly increasing function g and any increasing function ¢, the
conclusion of Theorem 53 holds without any continuity condition.

Theorem 54. Suppose | is an open interval and g:1 — Ris a strictly increasing
function. Let ¢:R — R be an increasing function and f :1 — R be a Borel
function. Let B be any Borel set in &(1).

(i) If the interval I is bounded from below,

IB fd f1y.q :J.v’l(B) Fovdy,,
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whenever any side of the equality exists finitely or infinitely. In particular, for

a,belanda<hb, j(a’b] fd ., =f(g+(a)’g+(b)] fovdu, . Moreover, if g is a strictly

increasing continuous function, then jB fdu,., = jg(B) fovd, .

(ii) If the interval I is bounded from above,
J-B fdu,, = LA(B) fondu,

whenever any side of the equality exists finitely or infinitely. In particular, for

a,belanda<hb, J[a,b) fd ., :j[g,(a),g,(b» fondu,. Moreover, if g is a strictly

increasing continuous function, then for any Borel set in &(1),
[ fdu,, = L<B) fondu,.
Proof. We shall prove only part (i). Part (ii) is similarly proven.
Leta, b € land a<b. Since g is strictly increasing and ¢ is increasing,
tyq ((@,0])=(g°9), (b)—(¢°9), (@) =4,(9. (b)) —¢.(9.(a)) ,
since g is strictly increasing,

= 14, ((9.(@),9.(0)]) = 1, (v"*((a,b])) , by Proposition 43.
Since half-open and half-closed intervals generate the Borel algebra,

#,4(E) = 11, (v (E)),

for all Borel set E in &(1). Therefore, by Theorem 52, for any Borel set B in
&),

J.B fdpty.g :J-B fd ('u¢V7l):J.v’1(B) Fovdp, .
In particular, j(a’b] fdu,, = Iw«a,b]) fovd =j(g+(a)’g+(b)] fovdu, .

If g is a continuous, strictly increasing function, then v is both left and right
inverse function of g and so v*(B)=g(B).

Theorem 55. Suppose | is an open interval and g:1 — Ris a strictly increasing
continuous function. Let ¢:R — R be an increasing function. Let J be the
smallest interval containing the range of g. Let f:R—>Ror f:J —>R be a Borel
function. Let a, b € | with a < b. If the interval | is bounded from below, then
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Juw Fo98tt5=] . . fdu, . 1f the interval I is bounded from above, then

I[a,b) Fogdu,, :j[g(a»g(b» fdg, .

Moreover, I[a,b] fogdu,, = j[ fd g, .

g(a).g(b)]
Proof. Suppose the interval | is bounded from below.

By Theorem 54 part (i),

-[(a,bl Fogduy., :-[(g(a),g(b)](f ° g)OVdﬂ¢ :-[(gw),g(b)] folg ov)d%’ :Lg(a),g(b)] fdg, ,

since g is continuous so that (g-v)(y)=g(v(y))=y forall yinJ. Note that
f(9(2)) 44y, {a} = T(9(2))((429), (@) —(4-9) (a))
= f(9(a))(¢.(9(a))-¢(9(a))).
since g is strictly increasing and continuous.

Now f(g(a))x,{9(a)} = f(9(a))(¢.(9(a)) -4 (9(a))) and so
f(9(a))u,.{a} = f(9(a))x,{g(a)}. Hence adding the end points to the integral

gives j[a’b] fogdu,, = j[ fdu, .

g(a).g(b)]

If the interval I is bounded from above, similar conclusion is reached by using
Theorem 54 part (ii).

Remark.

If the interval I is both bounded above and bounded below, then the conclusion
of Theorem 55 holds when g is just only continuous and increasing. For this
relaxation of strictly increasing condition, we shall examine the contribution of
the points of discontinuity in the domain of the function ¢, where its inverse
Image under g contains more than one point. See Corollary 61 below.

We now discuss a situation when we can dispense with the continuity condition
of g.

The result of Theorem 44 is also true when the integrand function f is increasing
with no continuity condition.

We shall need the following properties of the generalized inverse function of g.
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Proposition 56. Suppose I is an open interval bounded below and g:1 >R is

an increasing function. Let J be the smallest interval containing the range of g.
Let v:J — R be the generalised left continuous inverse of g as defined in
Definition 38.

Suppose «,B | aresuch that o <. Then

(i) a<v(y)<p if,andonly if, g, (@) <y<9.(B);

(i) v(y) <B=y<9.(B), y<g.(B=V(Y)<p;

(i) vi)2a=y2g. (@), y>g.(@)=Vv(Y)2a;

(iv) a<v(y)<f=09.(a)<y<g.(8), 9.(@)<y<g.(B)=a<Vv(y)<p;
(V) asv(y)<B=g.(2)<y<g.(B), 9.(a)<y<g.(B)=a=V(y)<p;
(Vi) asv(y)<p=9(2)<y<9.(B), 9.(@)<y=<g. () =asv(y)<p.
(vii) If v(y)=z,then g_(z2)<y<g,(2).

Proof.

(i) This follows from Proposition 43.

(if) Suppose y<g_(B). If v(y)=p,thenforall z<p , g(z)<y. Hence,
g_(B) <y contradicting y<g_(B) and so v(y) cannot be equalto g . If v(y)>}
, then y>g(B)>g_(B), contradicting y<g_ (B). Therefore, y<g (B8)=v(y)<pB.

Suppose v(y) < B. Then by definition of v, y<g(B3). By the proof of

Proposition 39 part (iv), for g (8)<y<g(B), v(y)=2,I1f g_(B)<g(p).
Therefore, y<g (B). Hence, v(y)<B8=y<g (B).

(iii). Part (i) is equivalent to Part (ii).

(iv), (v), (vi).

Parts (iv), (v) and (vi) follow from parts (i), (ii) and (iii).

(vii). If v(y) =z, then by definition of v, y<g(x)forall x>z. Hence, y<g,(2).

For x<v(y)=1z, g(x)<yforif on the contrary g(x)>vy, then x>v(y),
contradicting x<v(y)=z. Itfollowsthat g (z)<y.
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Theorem 57. Suppose | is an open interval bounded from below and g:1 »> Ris
an increasing function. Let f:1 —[0,0) be a non-negative increasing function.
Then for a,bel with a<b |

I[a,b] fdu, :J.vfl([a,b]) Fov(y)dy fov(y)dy,

N v[[g_ (a),9,b)]
where y, is the Lebesgue Stieltjes measure generated by g and v is the
generalised inverse of g as defined in Definition 38.

Proof.

Since f is a Borel function, there exists a monotone increasing sequence of (non-
negative) Borel measurable simple functions (s,) converging pointwise to f.

(See Theorem 16, Introduction To Measure Theory.)

For simplicity we take I =[a,b] and assumed that g (a)=g(a).
The sequence is constructed as follows as in Introduction To Measure Theory.

For each integer n > 1, divide the interval [0, n] into nx2" sub-intervals of

1
length —.
engt i

Let E,, = fl[['z_lzin , 1=12,---n2", F, =f"([n~)) and

nzn -

-1
Sn :Z?ZEM +n;(,:n .

i=1

Since f is increasing, the sets E_; are bounded intervals and F, is an interval,
which may not be bounded.

j-1 i-1 .
Note that E ; =E,.,; VE,..;. , Where 12n+1 = Of j=2i-1. Ontheset E,;,
j-1_i-1 - j _i-1
s,..(x) takes on the value ol = o when xisin E,,; and the value o >

when xisin E Observe also that

n+l, j+1*

F,=f7*(n,o)=f([n+Loo))u f*([n,n+1))=F,_,u f*([n,n+1))

n+l

and f7*([n,n+1))=U{E,,,; :i=n2""+1to (n+1)2""}.

n+1,i
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Thus, on the set F and on the

n+l1?

s,..(x) takes on the value n +1 when xisin E_,, |

set f7([n,n+1)), s,.,(x)takes on values >n, when s (x) is defined and is equal
to n. Therefore, s, >s, .

Since f(x) < , take an integer N such that N > f (x), then for all n > N,
s,..(X)<N as y. (x)=0and so the sequence is pointwise convergence.

Since f is increasing, we may modify the sequence by dropping the final term.

n2" s _
We redefine s, = le—nlle Thus,

Note that each E
Lebesgue Stieltjes measure. If E ; =[c,d) or[c,d] or (c,d] or (c,d) , then

is an interval. We examine the intervals with respect to the

n,i

#y (Eri)=9.(d)—g_(c) org.(d)-g_(c) org,(d)-g.(c) org_(d) - g, (c)

respectively. It follows that
#,(Eni)=m([9-(c). 9_(d))) orm((g_(c),9.(d)])

orm((g,(c), g.(d)])or m((g,(c), g_(d))).
Let E,° =[9.(c).9_(d)] or [g_(c),9.(d)] or [g,(c). 9. (d)]or [g.(c).g_(d)],
respectively. We note that by Proposition 56,
v ((c,d])=(9.(c), 9.(d)]. (9.(c), 9_(d)) = v ((c,d)) = (9. (), g_(d)],
(9-(¢),9-(d)) =v([c.d)) =[g.(c). g_(d)]. (9-(c). 9. (d)] = v ([c.d]) =[9_(c). 9. (d)].
Therefore, if E,;* =[c,d], then (c,d) cv(E,;) <[c,d]=E, °.

Thus, m(g,°)=m(v*(E,)),if E,, isnotasingletonset. If E, isa singleton

n,i

set, say {c} withc € I. Then d, ({c})=9,(c)-g (c) and E ;° =[g_(c), g, (c)].

By Proposition 56 part (vi) v*({c}) =[g_(c),g,(c)]. On the other hand, if
g_(c)<g.(c), then for all ye(g_(c),g.(c)], v(y)=c . Hence,
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(9_(c).9,©lc=v({c}) <[9_(c). 9. ()]
Therefore, m(E,;*)=m([g_(c)9.(©)]) =m(v'{c})) = s, ({c}) = 4, (E,; )

It follows that 4, (E,;)=m(v*

Jisdiy =3t (6,) =3 (v 4, )- 2‘;1m(v‘1[f‘1[[‘;1’£—nm]

:iiz;nlm(“"v’ﬂiz_nl JN Sl wz3)”

Evidently, > 2” j;( i ijjdy tends to jvflm fov(y)dy .
- 2

)) Therefore, taking I to be [a, b], we have

Therefore, [  fdu, =],  fov(y)dy=] fov(y)dy.

9(a).g, (b)]
In general, if [a,b]< | and | is an open interval, then

n2" i n2" i—1

m(v*(E,; [a,b]))

i=1

_ il'z;lm(vl( f -1@i2‘nl,%mmv*([a, b])]

n2" 3 1
_len _[Z V_( i-1 |DZ 1([ab])dy

2 2"

n2" x
Note that ZI 1[ 7 v*[ i ,]];(vl([ab])dy%.[ (F V)2, unydY = L 1([a’b])(f ov)dy . It

2"

follows that [ fdu, =

4(as) f ov(y)dy .

OV(y) dy = J.[g_(a),g,,b)] f

Instead of requiring the function g to be strictly increasing, we can impose some
restrictive continuity condition so that the conclusion of Theorem 54 holds.
This is just to make sure the limit of composition function behaves well.
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Theorem 58. Suppose | is an open interval bounded from below and g:1 >R

Is an increasing function. Let J be the smallest interval containing g(1). Let
G ={y e J:g'(y) contains more than one point.}. Suppose ¢:J — R is an increasing

function with the property that ¢ is right continuous at every pointy in G. Let
f :1 — R be a Borel function. Then for any Borel set B in &(1),

.[B fdﬂ¢°9 :Jv’l(B) f on,u¢ !

whenever any side of the equality exists finitely or infinitely. In particular, for
a,belanda<h, j(ab] fdu,, =f( fovdu,. If 1=[a,b] witha < b, then

9. (2.9, ()]
I[a,b] fdpy.q :J‘[g(a),g(b)] Fovd,.
Proof.

The key to the proof is a proper handling of the limit of composition functions.
Note that the collection {g~'({y}):y G} is a collection of disjoint intervals.

Since any collection of disjoint non-trivial intervals is countable, G is countable.
Note that by associating each g™*({y}) with a rational number, we deduce that

the collection of disjoint non-trivial intervals is countable. Note that if

X & U{g*l({y}) ty eG} , then for all zin I such that x < z, g(z) # g(x), consequently
(¢<9), Q) =lim(g=g)(2)= lim (4(y))=4.(9.(¥). If xeU{g"{y}:y<eG}, then
there exists x, 1 such that x, = x and g(x,)=g(x). If x<x,, then

(¢°9), 0=(¢°9)()=#(g(x) =4.(9(x)) =¢,(9.(x), Since ¢ is right continuous at
g(x). Ifxissuch that forall z>x, g(z)>g(x),i.e., xed(g™(g(x))

(#°9), () =¢.(9,(x). This means if g™ {y})=(c.d) or (c,d] or [c,d] or (c,d),
(#°09), (@) =¢,(9.(2)for ze(c,d). If ceg™{y}), then (g-q), (2)=¢,(9.(2)). If
deg™({y}),thenforall z>d, g(z)>g(d) and so (¢-g) (z2)=¢,(9.(2)). It
follows that for all xe1 , (¢-g), () =¢.(g,(x)). Therefore, forany a,pel,

with a< g,
s (. B1)=(429), (B)—(4°9), (@) =¢.(9,(B) ~4.(9, ()
= 14,((9,(), 9. (D)) = 1,y " (@, p]).

Since half-open and half-closed intervals of the form («, 8] generates the Borel
c-algebraon I, for all Borel set, B, inl, 4, (B)= v "(B). Therefore, by
Theorem 52,
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o fdug =], fd(uy)=] . fovd,.

If the interval | = [a, b], with a < b, then J =[g(a), g(b)] and
v*([a,b])=[g(a),g(b)]. This is because by Proposition 56,
v™((a,b])=(9,(a),9,(b)]=(g,(a),g(b)] and as v(g(a))=aand
v(g, (@) =inf{z:9(2) 2 g,(@)}=a, v*([a,b])=[g(a),g(b)]. Thus, under the

condition that 1 =[a,b] and J =[g(a), g(b)], J.[a,b] fd ., :I[g(a),g(b)] fovd g, . This

completes the proof of Theorem 58.

In general, if we relax the condition of right continuity on the set G, we may
obtain a sort of change of variable with a correction term coming from the set

G. The correction term is a contribution from the discontinuity of the function ¢
in the set G.

Now we state the corresponding result to Theorem 58 using left continuity.

Theorem 59. Suppose I is an open interval bounded from above and g: 1 >R

Is an increasing function. Let J be the smallest interval containing g(1). Let
G ={y e J:g'(y) contains more than one point.}. Suppose ¢:J — R is an increasing

function with the property that ¢ is left continuous at every pointy in G. Let
f :1 — R be a Borel function. Then for any Borel set B in &(1),

jB fdu,., = L,l(s) fondu,,

whenever any side of the equality exists finitely or infinitely. In particular, for
abelanda<b, [ fdu, =] fondu,. If 1=[ab] witha<b, then

I[a,b] fd gty :I[g(a),g(b>] Fondu, .

9-(a)g-(b)

The proof of Theorem 59 is similar to the proof of Theorem 58 and is omitted.

We now discuss how we can dispense with the right continuity of the function ¢
on the set G in Theorem 58. We can make use of the Saltus function of ¢to
write it as the sum of an increasing continuous function and an increasing Saltus
function. We can further write the Saltus function into a sum of an increasing
right continuous and an increasing left continuous function. We can then apply
the previous theorems to each of the functions. For now, we shall use this idea
on the set G.
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Suppose | is bounded from above and below. Suppose g:1 — R is an increasing
function. Let G={yeJ:g™*(y) contains more than one point.}. Let J be the smallest
interval containing the range of g. Suppose ¢:J — R is an increasing bounded
function.

We now define the left and right jump function at the points of G as follows.
For simplicity we let I =[a,b] with a < b and so the range of g is the closed
interval [g(a), g(b)].

Foreachyin G, let & =(#(y) -6 (V) 1,40y - THIS gives the value of the left
jumpaty forall xeJ and x>y. Define ®,=> 4. Note that since ¢ is

yeG

increasing on J =[g(a),g(b)] and each term ¢(y)—¢ (y) is non-negative,
Z(¢(y)—¢,(y)) IS non negative and is less than the total Saltus of ¢, which is

yeG

finite. Therefore, ) (#(y)—¢.(y)) is well defined and so @, is uniformly

yeG
convergent. Plainly, it is an increasing function and right continuous. Now,
define for each y in G, ¢ =(4,(y)—d(y) x40y aNd define @ =>4’ . Note that

yeG

&, = (4, (¥) —8(¥)) 2.0y 91VES the value of the right jump at y after y. Obviously,
it is an increasing function. Note that if x¢G , then @ _(x)=> ¢! and obviously,

y<X

lim®,,(2) =0,(x). If xeG, D ()= 4%, sinceatyin G, g, py(¥)=0. Thus,

y<Xx

@ (x)is left continuous. Observe that ¢—®, -®, is continuous at each y in G.

Note that
D (8. (V) -g(y), ifxeG,
D (X)= D BLX) =D (. (¥) = V) X1y 00 (X) = Z 0.)—d0), X G and

yeG,y<x

> @B(y)-4.(y), ifxeG,

®|S(X)=yeze‘,¢|s(x)=y€z;(¢(y)—¢(y))Z[y,g(b)](X)= Z G- 6 (V). ifxeG

yeG,y<x

If xeG, (D) N=D, ()= D (.(Y)-4(Y)),

yeG,y<x

((Drs)+(x)=q)rs(x)= Z (¢+(y)_¢(y))’

yeG,y<x
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(@), (=D, ()= > (#(y)-4.(y)) and

yeG,y<x

(@) (X) =D (x) = BY)-4.(¥)).

yeG,y<x

If yEG’ (¢_(Dls_(Drs)(y):¢(y)_(q)ls)(y)_(q)rs)(y)
=g(y)- D, (4.(2)-92)- Y (#(2)-¢.(2)

=4 (V)- D, @.@-¢@)- X ¥(2)-¢.(2)
=4 ()~ X, (4.(-4.(2)),

($-D=@) (N =N~ (P) N-(P) N=4.(N-C.(V)- D ¥D)-4.(2))

2eG,z<y

=p.(9)- D2, 4.(2)-9(2)- X (¥(2)-¢.(2))

2eG,z<y 2eG,z<y

=4.(9)- >, (4.(2)-4.(2)).

2eG,z<y

Therefore, (¢p—@, @) (Y)=(¢—D, —D,)(Y).

If yeG, (¢—0, D) () =4.(Y) (D), (V)= (D). (¥)
=4.() - P, (y)—(®), (¥)
=4.(y)- 2. (415(2)—415_(2))—26G Z<y(¢+(2)—¢(2))

2eG,zy

=4.(y)- 2, (9.(2)-4.(2)).
Therefore, (p—@,-D,,) (y)=(¢-D,—D,)(y). Hence, g—d - is continuous
at every point in G.

Let ®=¢-d -®_ . Then @ is continuous at every point in G. We shall show
that @ is an increasing function.

Y G0 -d@)+ Y 6.(2)-d(2), ifx<C,
P00=(@)HP)M = S o sy Y 6@)-d(@), ifxes

2eG,z<x 2eG,z<X
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Y, 0.()-¢.(2)+4(x)-4.(x), ifxeG

2eG,z<x

> (4.(2)-4.(2), ifxeG

2eG,z<x

Suppose x <y. Then
Y. (3.(D)-4.())+h(y)-9.(y), ifyeG,xeG,

2eG,x<z<y

Y. @.(2)-¢.(2)), ifyeG,xeG,

2eG,x<z<y

Y. @.(2)-4.(2)+4.(0)-¢(x), ifyeG,xeG,

7eG x<z<y

Y, .- @) +d(y) -4 () +¢.(x)-4(x), ifyeG,xeC

2eG x<z<y

D (y) -, (x) =

Since ¢ is increasing, for y >x,

D>, (@.@)-0.(2)+p(Y)-¢.(y),ifyeG,xeG,

2eG,x<z<y

Y. 4.(2)-4.(2).ifyeG xeG,

72eG,x<z<y

Y. 4.2)-4.(2)+ ()~ ¢.(y) +¢.(x) - ¢(x),ify G, x G,

2eG,x<z<y

> (4.(2)-4.@2)+4.()—¢(X), ify£G,xeG

2eG,x<z<y

#(y) —¢(x) =

=D (y) - D (x).

This is just a consequence of the fact that ¢ is increasing and so g(y)—g¢(x) is
greater than the sum of all the saltus between x and y plus the right jump at x
and the left jump aty. Thus, ®=¢-® - =¢-d, isan increasing function,
continuous at every point in G, @, is right continuous at every point in G and
® . is left continuous at every point in G.

We can now formulate our next result.

Theorem 60. Supposel =[a,b], with a <b, is a closed and bounded interval
and g:1 — Ris an increasing function. Let J =[g(a),g(b)] and

G ={y e J:g'(y) contains more than one point.}. Suppose #:J — R is an increasing
function. Let f :[a,b] > Rbe a Borel function. Then

JoTta =] Fovduy + 3 TN~ M)+ X F0O(B.0)-6()).

yeG

For any Borel set B in &([a,b]),
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J‘B fdy.g

[ fovdt+ 3 FEMEM-EM)+ Y f@ON(M)-41).

yeGrv(B) yeGrnt(B)

Moreover, fovduq,:j[g(a)’g(b)]fondyq, and Lfl(B)fovd/J@:L fond .

[9(a).9(b)] (B)

Proof.

I[a,b] fd’u¢°g ZJ'[avb] fdﬂ®°g+q’|s°g+®rs°g = .[[a,b] fd’uq)"g +I[a,b] fd‘u@ls"g +J'[a,b] fd'u(prs"g '

vd 1, . S—— )

By Theorem 58, |  fdu,., =

fo
9(a).g(d)]

Since @ is right continuous, by Theorem 58, j[a ’ fd 14y, . =j[ v,

g9(a).g(b)] Fo
Note that since @, is a constant function except for countable number of points
in G,

J‘[g(a),g(b)] f OVd'qu'S B yeZGJ.{y} f Ovd'uq’ls - Z f (V(y)),u% D

yeG

Now for eachy in G, x, ({y})=(D,), (¥)—(@,)_(¥)
Z((Dls)(y)_(q)|s ), (y)
= > BD)-4.())- D, BD)-4.(2))=4(Y)-4.(y).

2eG,zLy G,z<y

Hence fovdpy, =3 F Y (AY) ~¢(y)). -w-mmmmmmmmmemmees )

" Jg(@.90) =

By Theorem 59, [ fdu, ;=] fonduy, =2 f01(y) e, ({33).

g(@).9(b)] =

Observe that for eachy in G, u, {y})=(®,), (V)—(P,)_(¥)
=(@y), (V) =(Pys)(Y)
= > (0.@D-4@)- 2 @.(D)-4D)=¢.(y)-4(y).

2€G,z<y G,z<y

Hence, [ fdu, o =3 T (B.(Y) = () . -omrmmmmmemememeees 3)

yeG

Putting (1), (2) and (3) together we have that
ooy 10800 = J oy T2V + 25 T () =4.(0)+ 2 T (4.(D - 4()).

yeG

In general, for a Borel set B in &([a,b]),
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[ fdtpg = 1dbty g0, guong = [, 1ty + [ Tate, g + [ Tolite,

= fovdu, +.[V71(B) fovd s, +L71(B) fondy, ,

v(B)

by Theorem 58 and Theorem 59.

The last statement is a consequence of Theorem 58 and Theorem 59.

Corollary 61. Supposel =[a,b], with a <b, is a closed and bounded interval,
and g:1 — Ris an increasing continuous function. Let J =[g(a), g(b)] and
suppose ¢:J — R is an increasing function. Let f:J — R be a Borel function.

Then J-[a,b] fogdu,, = j[ fd s, .

g(a)g(b)]

Proof. With the notation as in Theorem 60, by Theorem 60,
Jo Fe0u, =] Fegevdu,+3 @@ -4-M)+ 2 F @@L -4Y)

00y [0 + 2 TN (BD) - 4.(0)+ X F(9)(4. (1) -4(y), since g is continuous,

- fdu, + j fdu, + j fd
I[g(a),gw)] Ho ™ Jig@aon Ao T diganomn o

- fd =j fdu, .
I[g(a).g<b>1 Hoowon = Jgaomn 9

If ¢ is an increasing function on a closed and bounded interval [c, d], then it is a
function of bounded variation. By Theorem 19, ¢ can be decomposed as a sum
of three functions, ¢=®,_ +®_+d , where @__ is an increasing absolutely

continuous function with ®_' =¢' almost everywhere, @_ is a continuous

increasing function with @ ' =0almost everywhere and @_ is the Saltus function
of ¢. Evidently, @_ is an increasing singular function. As explained in the
proof of Theorem 19, G(x) =¢—®, is a continuous increasing function.

Moreover, we note that ¢ is increasing and bounded so that ¢ is differentiable
almost everywhere and ¢' is finite and greater or equal to zero almost

everywhere. In particular ¢' is Lebesgue integrable and we may define
®,.(x) = [ ¢'dm = ["G'dm, where m is the Lebesgue measure. It follows that @, is
increasing. Note that @ is absolutely continuous. Let ®, =¢-® —®, . Then
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@_ is continuous and in particular, ®_ ' =0almost everywhere. Let c<x<y<d.
Then

('Dc (X) _q)c(y) = G(X)_(Dac(x) _(G(y) _q)ac(y))
=G()-G(y)+ | #dm=G(x)-G(y)+ | Htdm
<G(x)-G(y)+G(y)-G(x) =0,
by Theorem 6 of Absolutely Continuous Function on Arbitrary Domain and
Function of Bounded Variation. Therefore, @_ is an increasing function.

Observe that if we define ®, and @ for ¢ with the set D of discontinuity of ¢

in place of G, as we have done in the construction preceding Theorem 60, we
can show that @_ as given in the proof of Theorem 18 is equal to @ + @ ...

We now make use of the decomposition of ¢ into a sum of absolute continuous
increasing function, a continuous increasing singular function and an increasing
saltus function. Using the same argument as in Theorem 60, we obtain:

Theorem 62. Suppose | =[a,b] is a closed and bounded interval, with a<b
and g:1 — Ris an increasing function. Let J =[g(a), g(b)] and suppose ¢:J - R
is an increasing function. Let D ={y e J:¢ is discontinuous at y} be the set of
discontinuity of ¢. Let f :[a,b]— RDbe a Borel function. Then

J.[avb] My = I[g(a»g(b)]( fov)-g'dy

gy (T o¥) 80+ 2 T (BN -4 0)+ X TGN (D -9()).

yeD yeD

For any Borel set B in &([a,b]),
IB fd 24,4 :.[Vfl(s)(f ov)-¢'dy

g vl = 2 FONEM-6()+ 2. F@O)(A (M) -4Y)),

yeDAv(B) yeDnp1(B)

where @ is the continuous increasing singular function in the decomposition, ¢ =®, . +®_ +D,.

Moreover R
OFCOVer, [g(a),g(b)]( )-#'dy = j[g(a)g(b)] n)-g'dy,

I[g(a),g(b)](f Ov)dﬂ“‘)c :Lg(a>,g<b)](f On)dﬂ“’c ' Iv’l( (f V Py = I (B) 077 #'dy and

Ll(B) fovdu, =J.7771(B) fondu,, .
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Proof. Take a decomposition of ¢ , g=d_+d +d +D, , Where d_ isan

rs?

absolutely continuous increasing function with ®_'(x) = ¢'(x) almost everywhere

on J, @_ is a continuous increasing singular function, i.e., ®_.(x) =0 almost
everywhere, @, and ® _ are defined as before with the set D of discontinuity in
place of G. Then

J.[a,b] fdﬂ¢og - J.[a,b] fd’qu)acog+q’c°g+<bls°g+q)rs°g

= [y g+ [ Tt g+ [ Tt g+ ]

[a,b] [a,b]

fdlutl)rsog .
By Theorem 58 and Theorem 59,
J.[a,b] fd’u¢°9

f ond Ho

vd +J.
How ™ Jg@o0n

vd +j i
Ho. T Jig@am

- fovd +j i
[g(a).g(b)] 'ud)“ [g(a),g(b)]

dy + j ovd +j f
¢ y+ [g(a), g(b)] 'udjc [g(a).g(b)]

fo ﬂdﬂmrs 1

vd +'[
Houw ™ Jigao0n

[g(a).g(b)] (

since @,_ is absolutely continuous and @, =¢' almost everywhere,

- [g(a),g(b)]( ¢dy -[[g(a)g(b)] Vd'u“’c
+2 () -2 () + D F () (4. (Y) - 9(¥)),

where the last two terms are derived as in the proof of Theorem 60.
The last assertion follows from Theorem 58 and Theorem 59 as follows:

For a Borel set B in I,
IB fdll’l¢og = J‘B fd/’ld)acog+d)cog+®|sog+®rsog
=LmM%qum@wﬁtm%m+LmM%g

:J.v’l(B) f OVd’ud’ac +J.v’1(B) f on/u(I)C +J.V,1(B) ovd,uq,l +J. ond’ud’rs ,

IB)

:Lﬂw)fov-ﬁdy+ﬁﬂw)fovdy%

+ 2 feM(eM-sWM)+ > Fay)(4.()-4(y)).

yeDwv1(B) yeDn; 1 (B)

The assertions in the last statement are a consequence of the continuity of
@, and ®, and follows from Theorem 58 and Theorem 59.
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