National University of Singapore

Department of Mathematics

Semester 1 (2006/2007)

MA3110 Mathematical Analysis II Tutorial 3

1. For each of the following statements, determine whether it is true or false and justify your answer.

- (a) Every bounded sequence converges.
- (b) A convergent positive sequence of positive numbers has a positive limit.
- (c) A convergent sequence of rational numbers has a rational limit.
- (d) The limit of a convergent sequence in the interval (a, b) also belongs to (a, b)
- (e) The set of irrational numbers is a closed subset of \mathbf{R} .
- (f) The set of rational numbers in the interval [0, 1] is (countably) compact.
- (g) A subset of a (countably) compact set is also (countably) compact.
- (h) Every closed set is compact.
- (i) Every bounded set in **R** is a closed subset of **R**.
- (j) Every sequence of rational numbers has a convergent subsequence.
- (k) Every sequence in (0, 1) has a convergent subsequence.
- 2. Let S be the interval [1, 5).
 - (a) Using the definition of sequential compactness, show that S is not sequentially compact.
 - (b) Using the definition of countably compactness, show that S is not countably compact.
 - (c) Using the definition of closedness, show that S is not closed.
- 3. Let S be the set of rational numbers in [0,1].
 - (a) Using the definition of sequential compactness, show that S is not sequentially compact.
 - (b) Using the definition of countably compactness, show that *S* is not countably compact.
 - (c) Using the definition of closedness, show that S is not closed.
- 4. For c > 0, consider the quadratic equation

 $x^2 - x - c = 0, x > 0.$

Define the sequence (x_n) recursively by fixing $x_1 > 0$ and then, if *n* is an index for which x_n is defined, defining

$$x_{n+1} = \sqrt{c + x_n} \, .$$

Prove that the sequence (x_n) converges monotonically to the solution of the above equation.

- 5. Suppose (b_n) is a bounded sequence of nonnegative numbers and *r* is a number such that $0 \le r < 1$. Define $s_n = b_1 r + b_2 r^2 + ... + b_n r^n$ for each *n* in **P**. Prove that (s_n) is convergent.
- 6. Show that $[2, 3] \cup [4,5]$ is (countably) compact.
- 7. Let *A* and *B* be compact subsets of **R**. Show that $A \cup B$ and $A \cap B$ are (countably) compact.
- 8. If $A \cup B$ is (countably) compact, does it follow that both A and B are (countably) compact?
- 9. Suppose $f: [0,1] \to \mathbf{R}$ is defined by $f(x) = \begin{cases} x, x \text{ is rational} \\ 1-x, x \text{ is irrational} \end{cases}$. Determine the points of continuity of f.
- 10. If $f: D \to \mathbf{R}$ is continuous, prove that $|f|: D \to \mathbf{R}$ is also continuous.
- 11. Suppose $g : \mathbf{R} \to \mathbf{R}$ is continuous and that $g(x) = x^2$ for all rational *x*. Prove that $g(x) = x^2$ for all *x* in \mathbf{R} .