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This is an intriguing question.  Besides checking if the variation of a function is actually 

bounded above and the condition of absolute continuity is satisfied, we may use a useful but 

little-known criterion for deciding when a function is of bounded variation and absolutely 

continuous, given by Saks in his monograph "Theory of The Integral".  We state the result as 

Theorem 1 below. 

 

Theorem 1.  Suppose f : [a, b] → R is a  continuous function.  Suppose E is a measurable 

subset of [a, b] such that at each point x outside of E, f is differentiable, i.e.,   f ' (x) exists 

finitely and that the Lebesgue measure of f (E), m( f (E)) , is zero.  Suppose further there 

exists a Lebesgue integrable function g: [a, b] → R such that  

                                        f ' (x)  g(x) 

for x  [a, b] − E.  Then f is of bounded variation and absolutely continuous. 

 

 

Remark.  If f is absolutely continuous, then f is of bounded variation.  The condition given in 

Theorem 1 is sufficient to prove both bounded variation and absolute continuity.  On the 

other hand, if f is absolutely continuous, then the condition in Theorem 1 is fulfilled with g 

taken to be f ' and E the complement of the set on which f is differentiable. 

 

An immediate consequence is the following. 

                                        

Corollary 2.  Suppose f : [a, b] → R is a continuous function, differentiable everywhere 

except perhaps on a subset E of [a, b], which is at most denumerable.    

If f ' is Lebesgue integrable or summable, then f is absolutely continuous.  

 

Proof.   Note that trivially m(f(E)) = 0.  Let g be f '.  Then by Theorem 1, f is absolutely 

continuous. 

 

Remark.  The condition of Corollary 2 implies that f is a N function. (See Lemma 4 below.) 

Thus, Corollary 2 can be deduced from Theorem 7 of " Functions having Finite Derivatives, 

Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallee   

Poussin's Theorem". 

 

Next, we present a simple technical Lemma, a weaker form of a similar result in Saks 

monograph (Theorem 6.6 Chapter 9) restated by F. S. Cater replacing the Banach's condition 

(T2) by a stronger condition which implies that the function is an N function or a function 

satisfying Lusin's condition.  A function is a N function or Lusin function if it maps sets of 

measure zero to sets of measure zero.  Banach has proved that any continuous N function 

necessarily satisfies Banach condition (T2).   f is said to have Banach's condition (T2) if each 

value of the image of f, except possibly for a set of measure zero, is assumed by at most a 

denumerable number of points in the domain.  In this weaker form it is much easier to prove 

than the stronger version. 
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Lemma 3.   Suppose f : [a, b] → R is a continuous function.  Suppose P is a subset of [a, b] 

such that f is differentiable at each point of P and that m ( f ( [a, b] − P)) = 0.  Let P+ = {x  P 

: f ' (x)  0} and  P− = { x  P : f ' (x)  0} .  Then, max(0,  f (b) − f (a))  m*( f ( (a, b) P+ )) 

and max(0,  f (a) − f (b))  m*( f ( (a, b) P− )).  Consequently, 

              − m*(f ((a, b) P− ))   f (b) − f (a)   m*( f ( (a, b) P+ )). 

 

Proof.    Suppose f (a) < f (b).  By hypothesis, m(f ( (a, b) − P)) = 0.  Therefore, 

                m*((f (a), f (b)) − f ((a, b) − P)) = m*((f (a), f (b))) = f (b) − f (a). 

Next, we show that  

                       (f (a), f (b)) − f ((a, b) − P)  f ((a, b) P+). 

Take y in (f (a), f (b)) − f ((a, b) − P).  Then f (a) < y < f (b) and y  f ((a, b) − P).  Then           

f −1 (y) is a subset of P and so f is differentiable at each point of f −1 (y). Now, since f is 

continuous, f −1 (y) is compact and so is closed and bounded.  Let e = max{x: x  f −1 (y)}.  

Then f ' (e)  0.  This is because if f ' (e) < 0, then by the definition of the derivative, there 

exists x' > e such that  

                        b > x' and f (b) > y = f (e) > f (x' ).  

Thus, by the Intermediate Value Theorem, there exists a point d such that b >d >x' and f (d) = 

y.  Hence, d f −1 (y) and d > e.  This contradicts that e = max{x: x  f −1 (y)}.  Hence, y = f 

(e)  f ((a, b) P+).  It follows that 

                      (f (a), f (b)) − f ((a, b) − P)  f ((a, b) P+). 

Therefore, 

                m*((f (a), f (b)) − f ((a, b) − P))  m*(f ((a, b) P+))  

and consequently, 

                                 f (b) − f (a)  m*(f ((a, b) P+)). 

Suppose f (a) > f (b).  Using a similar argument, we show that   

                                  f (a) − f (b)  m*(f ((a, b) P− )). 

It follows that max(0, f (b) − f (a))  m*( f ( (a, b) P+ )) and 

                       max(0,  f (a) − f (b))  m*( f ( (a, b) P− )). 

 

 

Before we embark on the proof of Theorem 1, we show that under the hypothesis of Lemma 

3, f is a N function. 

 

Lemma 4.  Suppose f : [a, b] → R is a continuous function.  Suppose P is a subset of [a, b] 

such that f is differentiable (finitely) at each point of P and that m (f ([a, b] − P)) = 0.   Then f 

is an N function. 

 

Proof.    Let E be a subset of [a, b] of measure 0.  Write E = (EP)  (E ([a, b] − P)).   

Then m(EP) = 0 and m (E ([a, b] − P)) = 0.  By hypothesis, 

                            m (f (E([a, b] − P)) = 0. 

Since m(EP) = 0, EP is measurable.  Then by Theorem 2 of " Functions having Finite 

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La 

Vallee Poussin's Theorem", 

                              ( )* ( ) 0
E P

m f E P f


  = .  

It follows that m ( f (E P)) = 0.  Since 

              m*(f (E))  m*(f (E P)) + m*( f (E( [a, b] − P)) = 0, 

 m(f (E)) =m*( f (E)) = 0.  Hence, f is a N function. 
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Proof of Theorem 1.         

The key is to show that either f has bounded positive variation or bounded negative variation.  

Then, since f is continuous and bounded it follows that f is of bounded variation.  We can 

deduce this as follows. 

Suppose f has bounded positive variation.  Take any partition Q: a = x0 < x1  < xn = b.  Let 

p(Q) be the positive variation with respect to Q and n(Q) be the negative variation with 

respect to Q.  Then 

                               f (b) − f (a) = p(Q) − n(Q). 

It follows that n(Q) = p(Q) + f (a) − f (b)  f (a) − f (b) + p( f ), where p( f ) is the positive 

variation of  f ,  for any partition Q.  This shows that f has bounded negative variation and so f 

has bounded total variation.  Conversely, we can show similarly, that if f has bounded 

negative variation, then f has bounded positive variation and so is of bounded variation. 

 

Let P = [a, b] − E.   

Then f is differentiable at each point of P and ( ) ( )([ , ] ) ( ) 0m f a b P m f E− = =  . 

Let [ai , bi ] be any closed subinterval in [a, b].   Then by Lemma 3, 

                max(0,  f (bi ) − f (ai ))  m*( f ( (ai , bi ) P+ )) 

Note that P is measurable and so P+   = {x  P: f ' (x)  0}is also measurable.  By Theorem 2 

of " Functions having Finite Derivatives, Bounded Variation, Absolute Continuity, the 

Banach Zarecki Theorem and de La Vallee Poussin's Theorem", 

                    ( )
( , ) ( , )

* (( , ) )
i i i i

i i
a b P a b P

m f a b P f f
+ +

+
 

   =  .  

But by hypothesis, f ' (x)  | g(x) | for x in P+, and so 

                    
( , ) ( , ) ( , )

i

i i i i i i i

b

a b P a b P a b a
f g g g

+ + 
   =    .  

Therefore, it follows by Lemma 3 that 

                                 max(0, ( ) ( ))
i

i

b

i i
a

f b f a g−   .  --------------------------  (1) 

Note that since g is Lebesgue integrable, | g | is also Lebesgue integrable. 

So take any partition Q: a = x0 < x1  < xn = b.  Then by (1) 

               ( )
1

1

1 1

( ) max ( ) ( ),0
i

i

n n x b

i i
x a

i i

p Q f x f x g g
−

−

= =

= −  =   . 

Hence, f is of bounded positive variation.  Consequently, f is of bounded variation. 

Therefore, f is differentiable almost everywhere and f ' is Lebesgue integrable.   Then using 

the same set P as above and replacing g by f ' for any closed interval [u, v] in [a, b], by (1) we 

get, if f (u) < f (v), 

                                     ( ) ( )
v

u
f v f u f −   . 

Also, if f (u) > f (v), by Lemma 3,  

                      ( )( ) ( ) * (( , ) )
v

u
f u f v m f u v P f−

−     .  

Hence,   

                              ( ) ( )
v

u
f v f u f −   .  ---------------------------  (2) 

 

Note that the function F(x) defined by ( )
x

a
F x f =  is absolutely continuous because it is the 

indefinite integral of a Lebesgue integrable function. Thus, given  > 0, there exists  > 0 
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such that for any non-overlapping sequence of closed intervals {[ai , bi ] ; i =1, ,n} with  

1

n

i i

i

b a 
=

−  , we have that  

                                               
1

i

i

n b

a
i

f 
=

  . 

Therefore, for any non-overlapping sequence {[ai , bi ] } with  i i

i

b a −  , 

                       
1 1

( ) ( )
i

i

n n b

i i
a

i i

f b f a f 
= =

−    . 

This shows that f is absolutely continuous.  This completes the proof. 

 

Remark. 1. The hypothesis of Theorem 1 implies that m( f ({x  [a, b] : f ' (x) =   }) = 0.  

Furthermore, it also implies that f is of bounded variation.  Thus, it follows by Theorem 13 of 

"Functions having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach 

Zarecki Theorem and de La Vallee Poussin's Theorem", that  f  is absolutely continuous.  

Note that m( f ({x  [a, b] : f ' (x) =   }) = 0 is a necessary condition for absolute 

continuity. 

2.  By Lemma 4, any function f satisfying the hypothesis of Theorem 1 is a N function.  So, 

Theorem 1 resembles the Banach Zarecki Theorem since the hypothesis implies that f is of 

bounded variation.  Recall that Banach Zarecki Theorem states that any continuous function 

of bounded variation on a closed and bounded interval, which is also a N function is 

absolutely continuous.  Theorem 1 is a little more convenient since one need not verify that 

the function f is of bounded variation. 

 

If it is known that the function f : [a, b] → R is a continuous N function, which is 

differentiable almost everywhere on [a, b], then  f  maps its set of non-differentiability (finite 

or infinite) into a set of measure zero.  Consequently, by Theorem 1, for f to be absolutely 

continuous it is sufficient and necessary that f ' be dominated from above by a Lebesgue 

integrable function.  We state this result below. 

 

Theorem 5.  Suppose f : [a, b] → R is a continuous N function.  Furthermore, suppose that f 

is differentiable almost everywhere on [a, b].   Then f is absolutely continuous if, and only if, 

there exists a Lebesgue integrable function g such that   f '  g almost everywhere on [a, b]. 

 

 

The following is a consequence of Theorem 5. 

 

Corollary 6.  Suppose f : [a, b] → R is a continuous function.  Furthermore, suppose that f is 

differentiable everywhere on [a, b] except perhaps on a subset which is at most denumerable.   

Then f is absolutely continuous if there exists a Lebesgue integrable function g such that           

f '    g almost everywhere on [a, b]. 

 

Proof.  Note that if  f : [a, b] → R is continuous and differentiable everywhere on [a, b] 

except perhaps on a subset which is at most denumerable, then  f  is a N function.  The result 

then follows immediately from Theorem 5. 

 

Remark.  1.  Compare Theorem 5 with Theorem 7 of " Functions having Finite Derivatives, 

Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallee 
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Poussin's Theorem" which states that, given the hypothesis of Theorem 5, f is absolutely 

continuous if, and only if, f ' is Lebesgue integrable.  Theorem 5 is easier to use as we only 

need to look for a Lebesgue integrable function dominating the derivative of f, where the 

derivative of f exists (finitely). 

 

We now apply Theorem 1 to prove Goodman's version of a change of variable formula for 

the Lebesgue integral.  We state the Theorem as follows. 

 

Theorem 7.  Suppose g: [a, b] → R is continuous and f : [c, d] → R is a Lebesgue integrable 

function such that the range of g is contained in [c, d].  Let F : [c, d] → R be defined by 

( ) ( )
x

c
F x f t dt=  .  Suppose g maps its set of non-differentiability into a set of measure zero.  

Define the function g*:[a, b] → R  by 

                                  

                                   
( ),   when ( ) exists (finitely),

*( )
0 ,  when ( ) does not exist or is infinite

g x g x
g x

g x

 
= 


  

 

Then 
( )

( )
( ) ( ( )) *( )

g b b

g a a
f x dx f g x g x dx=    if the integral on the right exists. 

 

Proof.   Note that F and g are both continuous.  It is sufficient to show that if  

( ( )) *( )
b

a
f g x g x dx exists, then the function F g  is absolutely continuous and that 

                           ( ) ( ) ( ( )) *( )F g x f g x g x =                                

almost everywhere on [a, b]. 

Observe that if g is differentiable at x and F is differentiable at g(x), then F g  is 

differentiable at x.  Now, F is absolutely continuous and so F is differentiable almost 

everywhere on [c, d].  Thus, there exists a subset E such that m(E) = 0, F is differentiable on 

[c, d] − E and F'  = f  on [c, d] − E .  By hypothesis, g is differentiable except on a set A, 

where m (g(A)) = 0.   By lemma 4, g is a N function.   Let B = A  g −1 (E).   Since the 

Lebesgue measure on [a, b] is regular, there exists a measurable subset C  B such that m(C 

− B) = 0.   Then for x  C, g is differentiable at x and F is differentiable at g(x) and so F g is 

differentiable at every x in [a, b] − C and  

                            ( ) ( ) ( ( )) ( )F g x f g x g x = .    

Now g(B)  E  g(A).  Since m(E) = 0 and m (g(A)) = 0, m (g(B)) = 0.  Since F is absolutely 

continuous, F is a N function and so ( ( )) 0m F g B = . As m(C−B) = 0, we have too that  

( ( )) 0m F g C B− = . It follows that ( ( )) 0m F g C = .  Moreover, for every x in [a, b] − C, 

                                 
and by hypothesis ( ( )) *( )f g x g x  is Lebesgue integrable.  Therefore, by Theorem 1,  F g is 

absolutely continuous on [a, b].  Consequently, F g  is differentiable almost everywhere on 

[a, b] and so F g  is differentiable almost everywhere on B. As ( ( )) 0m F g B = , by 

Theorem 2 of "Change of Variables Theorem", ( ) 0F g  =  almost everywhere on                

B =A  g −1 (E).  Note that g is differentiable on g −1 (E) −  A and ( )1( ( ) ) 0m g g E A− − = .  

Then by Theorem 2 of "Change of Variables Theorem", g' = 0 almost everywhere on              

g −1 (E) − A and so ( ) ( ) ( ( )) ( ) 0F g x f g x g x = = almost everywhere on g −1 (E) − A.   

Hence, 

(F g)(x) = f (g(x))g(x)  f (g(x))g(x)
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( ( )) ( ),   when ( ) exists (finitely),

( ) ( )
0 ,  when ( ) does not exist or is infinite

f g x g x g x
F g x

g x

 
 = 


 

                                               almost everywhere on [a, b] 

                                   ( ( )) *( )f g x g x=  almost everywhere on [a, b]. --------------  (1) 

 

By the absolute continuity of F, 

                             
( )

( )
( ) ( ( )) ( ( ))

g b

g a
f x dx F g b F g a= − .         ----------------------   (2) 

 

By the absolute continuity of F g , 

                       ( ( ) ( ( )) ( ) ( )
b

a
F g b F g a F g x dx− =    

 

                                                   ( ( )) *( )
b

a
f g x g x dx=     ------------------------- (3) 

by (1). 

It then follows from (2) and (3) that 

                            
( )

( )
( ) ( ( )) *( )

g b b

g a a
f x dx f g x g x dx=  . 

 

 

Goodman stated a more generalized change of variable theorem, requiring only that g 

satisfies Lusin's condition, i.e., g is a continuous N function.   

 

Theorem 8.  Suppose g: [a, b] → R is a continuous N function and  f : [c, d] → R is a 

Lebesgue integrable function such that the range of g is contained in [c, d].  Let                      

F : [c, d] → R be defined by ( ) ( )
x

c
F x f t dt=  .  Define the function g* :[a, b] → R  by 

                                 
( ),   when ( ) exists (finitely),

*( )
0 ,  when ( ) does not exist or is infinite

g x g x
g x

g x

 
= 


. 

 

Then  
( )

( )
( ) ( ( )) *( )

g b b

g a a
f x dx f g x g x dx=   if the integral on the right exists, or more precisely, 

if the integral ( ( )) *( )
D

f g x g x dx exists, where D is the set on which g is differentiable 

finitely. 

 

 

As in the proof of Theorem 1 in "Change of Variables Theorems", the main step is to show 

that F g is absolutely continuous and that an extended generalized chain rule for the 

composite function F g  holds almost everywhere on [a, b]. 

 

Firstly, we state the following chain rule for F g . 

 

Theorem 9.   Suppose g: [a, b] → R is a continuous N function and f : [c, d] → R is a 

Lebesgue integrable function such that the range of g is contained in [c, d].  Let F : [c, d] → 

R be defined by ( ) ( )
x

c
F x f t dt=  .   
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Then there is (i) a subset L such that ( ( )) 0m F g L =  and for any x in L, if  ( ) ( )F g x  

exists, ( ) ( ) 0F g x =  except for such x in a set of measure zero and if ( )g x  exists, either

( ) 0g x =  except for such x in a subset of L of measure zero or  f (g(x))= 0, (ii) a subset K in 

the complement of L, where both ( ) ( )F g x  and ( )g x  do not exist for every x in K and (iii) 

                                  ( ) ( ) ( ( )) ( )F g x f g x g x =    

for x in the complement of LK.  

 

Proof.   Since F is an indefinite integral of an integrable function, F is absolutely continuous.  

Therefore, F is differentiable almost everywhere on [c, d].  Thus, there exists a subset E of  

[c, d] such that m(E) = 0 and F is differentiable (finitely) on [c, d] − E and F'(x) =  f (x) for x 

in [c, d] − E .  Note that F is also a N function since it is absolutely continuous and so 

m(F(E)) = 0.   Let E0 = {x  [c, d]:  F is differentiable at x and F' (x) = 0}.  Then by Theorem 

3 of  " Functions having Finite Derivatives, Bounded Variation, Absolute Continuity, the 

Banach Zarecki Theorem and de La Vallee Poussin's Theorem",  m(F(E0 )) = 0.  

Let B = g −1(EE0).   Suppose g'(x) does not exist finitely at every point of a subset A and 

differentiable (finitely) at every point outside of A.  Let A be the subset of A where the 

derivative is .  Then by the Theorem of Denjoy, Saks and Young (Theorem 14), m(A) = 

0. 

Let C = AB.  Then for any x in [a, b] − C, F is differentiable at g(x) and g is differentiable at 

x, consequently, F g is differentiable at x and 

                             ( ) ( ) ( ( )) ( )F g x f g x g x = . 

Note that since both F and g are N functions, the composite, F g is also a N function. Let C1 

= A B. Then ( )1( ) 0m F g C =   because ( )( ) 0m F g A =  and because 0( )g B E E   so 

that ( ) ( )0( ) ( ) 0m F g B m F E E  = .       

Now consider K = A − C1.   Then F is differentiable at g(x) for every x in K and F'(g(x))  0.   

Thus, for x in K, we can write, 

 

                    ( )
( ) ( ) ( ) ( )

( ) ( )
F g x h F g x g x h g x

H g x h g x
h h

+ − + −
= + −  , 

where, 

( ( ) ) ( ( ))
,  when 0,

( )

( ( )),   when 0

F g x k F g x
k

H k k

F g x k

+ −


= 
  =

 ,                     -------------------  (1) 

and H is continuous. 

It follows from (1) that both F g  and g are not differentiable finitely or infinitely at every 

point in K.  

Let L = C1 .  Then L K = C. 

Now, since  ( )1( ) 0m F g C = , on the subset of C1, where F g  is differentiable finitely or 

infinitely, ( ) ( ) 0F g x =  almost everywhere by Theorem 2 of "Change of Variables 

Theorems".  If x is in C1 − A, then g'(x) exists finitely.  Since m(g(g −1(E) (C1 − A))) = 0, by 

Theorem 2 of "Change of Variables Theorems", g'(x) = 0 almost everywhere on                       

g −1(E) (C1 − A) and since g ((C1 − A) − (g −1(E) (C1 − A)))  E0 − E,  f (g (x)) = 0 for 

every x in (C1 − A) − (g −1(E) (C1 − A)). 

 Consequently, 
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                           ( ) ( ) ( ( )) *( ) 0F g x f g x g x = = ,   

whenever ( ) ( )F g x  exists in L.  This completes the proof. 

 

 

We shall need the following theorem due to Banach (see Saks monograph chapter 9, 

Theorem 7.3). 

 

Theorem 10 (Banach).   Suppose f : [a, b] → R is a continuous N function. Then f satisfies 

Banach condition (T2) on [a, b]. 

 

I thank Thierry Jeulin for pointing out that a previous version of Theorem 11 is incorrect.   

The current version is needed to prove a stronger version (Lemma 12) of Lemma 3.  

 

Theorem 11.  Suppose f : [a, b] → R is a continuous function.  Let K be the subset of [a, b] 

such that   f ' (x) does not exist finitely or infinitely for any x in K.  Suppose for each y in            

f (K), there exists an isolated point x in K of 1( )f y− .  Then ( )( ) 0m f K = .  

Proof  

By hypothesis with each y in f (K), there exists a point xy in K such that xy is an isolated point 

of  f  −1(y).  Thus, by examining the sign of  f (x) − f (xy) for x in a small neighbourhood of xy 

and not equal to xy,  f (x) − f (xy) either changes sign as x passes through xy or the sign remains 

the same.   

If  f (x) − f (xy) changes sign as x passes through xy , then  f (xy) is either a strict local 

maximum or a strict local minimum.  It follows that such a point xy belongs to a set which is 

at most denumerable and hence of measure zero.  (See Theorem 16 below.) 

If the sign of f (x) − f (xy) remains the same in a small punctured neighbourhood of xy , then 

the four Dini derivatives have the same sign.  As  f ' (xy)  , we have that either 0  min(D+ 

f (xy), D−  f (xy)) <   or   0  max(D+f (xy), D− f (xy)) > − .  Since f is not differentiable at xy , 

by Theorem 15 below, xy belongs to a set E of measure zero and ( ( )) 0m f E = .  Hence the 

collection {xy : y  f (K)} is a set of measure zero and that ( ( )) 0m f K = . 

 

 

To prove Theorem 13, a result about when a continuous function is of bounded variation, we 

shall need a stronger result than Lemma 3.  

 

Lemma 12.    Suppose f : [a, b] → R is a continuous function that satisfies Banach’s 

condition T2 .  Let  { [ , ]: ( ) 0}P x a b f x+
=    and  { [ , ]: ( ) 0}P x a b f x−

=   . 

Then, max(0,  f (b) − f (a))  m*( f ( (a, b) P+ )) and max(0,  f (a) − f (b))  m*( f ( (a, b) 

P− )).  Consequently, 

              − m*(f ((a, b) P− ))   f (b) − f (a)   m*( f ( (a, b) P+ )). 

Let P be the subset of [a, b] such that f is differentiable finitely or infinitely at each point of 

P.  The set P is uncountable.  Moreover, unless f is a constant function one of  or P P+ − must 

have positive measure. 

 

Proof.    Suppose f (a) < f (b).   Let Y be the subset of the values in the range of f , which are 

assumed by f at most an enumerable number of times. By removing values from Y if need be, 

we may assume that the values of  f (a) and  f (b) is not assumed only once.  Then since f  is 
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T2 , ( (( , )) ) 0m f a b Y− = .  For each y in (( , ))f a b , let 1( )yE f y−= .  Since f  is continuous, 

yE  is closed in [a, b].  We shall show that for each y Y , we can choose a point y yx E  

such that (i) the upper derivate of f at x, ( ) 0yD f x  and (ii) yx  is an isolated point of yE .   

If yE  is a single point and since f (a) < f (b), we choose yx to be this point and plainly, (i) and 

(ii) are satisfied for yx .   

Suppose now yE contains more than one point.  Note that yE is at most denumerable. 

If yE is finite, then each point of yE is an isolated point of yE . Pick any two points, 

 and y y  in yE such that  < y y  and (  , )y y yE   =  .  That is, there are no other 

isolated point of yE  between  and y y  .  Therefore, for all x in  < y y  , ( )f x y .  

Therefore, one of  ( ) or ( )y yDf Df  ≥ 0.  Choose yx to be one of  or y y  when the upper 

derivate of f at the point is greater or equal to 0.  Note that since 1 1( ( )) and ( ( ))f f a f f b− −  

each contains more than one point, we may choose yx to be in (a, b). 

If  yE  is an infinite set, then it is at most denumerable and closed in [a, b].  

Let 
yE   be the set of limit points of yE .  Since yE  is closed, 

y yE E  and so 
yE  is at most 

denumerable.  Note that on account of Bolzano Weierstrass Theorem, 
yE   is non empty and 

is closed.  Since 
yE   is at most denumerable, it cannot be a perfect set and must contain an 

isolated point 0x . Thus, there exists an open interval (c, d) such that 
0( , ) yc d E x = .  

Therefore, there are no other limit points of  yE in (c, d) except 0x .  Hence there are only 

isolated points of yE in 0( , ) { }c d x− . Since there are no limit points of yE in 0( , ) { }c d x− we 

can find a pair of consecutive isolated points  < y y  in 0( , ) { }c d x− .  Now we choose yx to 

be one of  or y y  when the upper derivate of f at the point is greater or equal to 0.  Note that 

( , )yx a b .  Since 0x  is a limit point of yE , at least one of 0( , ) yc x E or 0( , ) yx d E is 

infinite and contains no limit points of yE .  

Now, let { : }yX x y Y=  .  Then on account of (i) f is not differentiable finitely or infinitely 

on X P+− .  By Theorem 11, ( ( )) 0m f X P+− = .  Hence, ( ( )) 0m f X P− = . 

Therefore, ( ) ( ( )) ( ( ) ( ( ))m Y m f X m f X P m f P+ += =   .  Since f is continuous, 

( ) ( ) ( ([ , ]) ( ) ( ( )).f b f a m f a b m Y m f P+−  =    

 

Suppose f (a) > f (b).  Let Y be the subset of the values in the range of f which are assumed by 

f at most an enumerable number of times.  We assume that if f (a) is assumed only once by a, 

then we remove f(a) from Y and also if f(b) is assumed only once by b in [a, b], then we 

remove f(b) from Y too. Then since f is T2 ,  ( (( , )) ) 0m f a b Y− = .  For each y in (( , ))f a b , let 
1( )yE f y−= .  Since f is continuous, yE  is closed in [a, b].   As before, we can show that for 

each y Y , we can choose a point y yx E  such that (i) the lower derivate of f at x, 

( ) 0yD f x  and (ii) yx  is an isolated point of yE .   With these two properties, we show 

similarly as above that 

                  ( ) ( ) ( ([ , ]) ( ) ( ( )).f a f b m f a b m Y m f P−−  =   
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It follows that  

              − m*(f ((a, b) P− ))   f (b) − f (a)   m*( f ( (a, b) P+ )). 

 

Thus, for any ( , ]c a b ,      

               − m*(f ((a, c) P− ))   f (c) − f (a)   m*( f ( (a, c) P+ )). ---------- (1).  

 

If ( ( )) ( ( )) 0m f P m f P− += = , it follows from (1) that ( ) ( )f c f a=  for ( , ]c a b  and so f is a 

constant function.  Therefore, if  f is not a constant function, one of ( ) or ( )f P f P− + must have 

positive measure and so ( ( )) 0m f P P− +   and the set P P P+ −=   is non-denumerable.  

 

Note that assuming that the interval [a, b] is non-degenerate, (i) if f (a) < f (b), then 

( ([ , ]) ( ( ))m f a b m f P+=  and if ( ( )) 0m f P+ = , then ( ([ , ]) 0m f a b =  and so  f is a constant 

function (ii) if f (a) > f (b), then ( ([ , ]) ( ( ))m f a b m f P−=  and  if ( ( )) 0m f P− = , then 

( ([ , ]) 0m f a b = and so  f is a constant function (iii) if f (a) = f (b) and f is not constant, then 

for any c in (a, b) such that f (a) < f (c) ( ([ , ]) ( ( ( , )))m f a c m f P a c+=  and 

( ([ , ]) ( ( ( , )))m f c b m f P c b−=   so that ( ([ , ]) 0m f a b = if ( ( )) ( ( )) 0m f P m f P+ −= = giving a 

contradiction and (iv)  if f (a) = f (b) and f is not constant, then for any c in (a, b) such that f 

(a) > f (c), ( ([ , ]) ( ( ( , )))m f a c m f P a c−=  and ( ([ , ]) ( ( ( , )))m f c b m f P c b+=   so that 

( ([ , ]) 0m f a b = if ( ( )) ( ( )) 0m f P m f P+ −= = giving a contradiction. Hence, one of  

( ) or ( )f P f P− + must have positive measure unless f is a constant function. 

 

 

Theorem 13.  Suppose f : [a, b] → R is a  continuous function satisfying condition T2.   Let 

:[ , ]g a b →  be a Lebesgue integrable function.  Suppose ( ) ( )f x g x   at each point x for 

which the derivative exists except perhaps those of a denumerable subset or those of a 

measurable subset E for which ( ( )) 0m f E = .  Then f is of bounded variation and for any sub-

interval [c, d] in [a, b], ( ) ( ) ( )
d

c
f d f c f x dx−   . 

Proof.  The proof is almost similar to the proof of Theorem 1. 

We shall show that f has bounded positive variation. Then, since f is continuous and bounded 

it follows that f is of bounded variation.   

 

Let  { [ , ]: ( ) 0}P x a b f x+
=   , that is P+  is the subset of points in [a, b], at which derivative 

of f exists and is non-negative.   Now for each point in P E+ − , by hypothesis, ( ) ( )f x g x  .  

This means that f is differentiable finitely in P E+ − .  Therefore, by Theorem 2 of “Functions 

Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki 

Theorem and de La Vallée Poussin's Theorem”,   

*( ( ))
P E P E P E P E

m f P E f f g g
+ + + +

+
− − − −

 −  =  =    . 

 By hypothesis, ( ( )) 0m f E = .   Therefore, for any interval [c, d], by Lemma 12, 

 

           ( )( ) ( )( )max(0, ( ) ( )) * ( , ) * ( , ) (f d f c m f c d P m f c d P E+ +−   =  −   

                                            
( , ) ( )

( )
d

c d P E c
g g x dx

+ −
    ---------------------  (1) 

Note that since g is Lebesgue integrable, | g | is also Lebesgue integrable. 
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For any partition Q: a = x0 < x1  < xn = b,  by (1), 

                                     ( )
1

1

1 1

( ) max ( ) ( ),0
i

i

n n x b

i i
x a

i i

p Q f x f x g g
−

−

= =

= −  =   . 

Hence, f is of bounded positive variation.  Consequently, f is of bounded variation. 

It follows that f is a continuous function of bounded variation.  Therefore, for any two points 

c and d in [a, b] with c < d,  

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
d d

f f f
c c

f d f c f d f c d c x dx f x dx    −  −  −  =  . 

Much more is true. Since f is continuous with bounded variation, by Corollary 24 of  

“Lebesgue Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 

Integration by Parts for Lebesgue Stieltjes Integrals”, the Lebesgue Stieltjes measure f   

generated by f satisfies 

             ( ) ( )([ , ]) ( [ , ]) ( [ , ])
d

f f f
c

c d f m v I c d m v I c d + −
= +  −    

where { [ , ]:  is continuous at  and ( ) }I x a b f x f x+
=  = + and 

{ [ , ]:  is continuous at  and ( ) }I x a b f x f x−
=  = − .   

Hence, ( ) ( )( ) ( ) ([ , ]) ( [ , ]) ( [ , ])
d

f f f
c

f d f c c d f m v I c d m v I c d + −
− = = +  −   --------- (1) 

By hypothesis, ( ( )) 0m f I+ =  and so ( ( )) 0fm v I+ =  by Theorem 1 of “Functions of 

Bounded Variation and Johnson's Indicatrix”.  Hence,        

                 ( )( ) ( ) ( [ , ])
d d

f
c c

f d f c f m v I c d f+
 −  +  =  . 

 

Remark. 

If  f  is continuous of bounded variation on [a, b] and ( ( )) 0m f I I+ − = , then by identity 

(1) above,  ( ) ( )
d

c
f d f c f − =  for any two points c, d with c  < d.  Consequently, f is 

absolutely continuous on [a, b].   If f is absolutely continuous, then ( ( )) 0m f I I+ − = .  

Hence, ( ( )) 0m f I I+ − = is a necessary and sufficient condition for a continuous function 

of bounded variation on [a, b] to be absolutely continuous. 

(See Theorem 16 in of “Absolutely Continuous Function on Arbitrary Domain and Function 

of Bounded Variation” and its proof.) 

 

 

We now state a version of the theorem of Denjoy, Saks and Young for reference. (This is 

Theorem 13 of “Denjoy Saks Young Theorem for Arbitrary Function”.) 

 

Theorem 14. (Denjoy Saks Young Theorem.) 

 Suppose :f A →  is a finite valued function.  Let 

 : ( )  or ( )  or ( )  or ( )A A A AN x A D f x D f x D f x D f x+ −

+ −=  = − = − =  =   , 

 : ( ) exists and is finiteAS x A Df x=  , 

 : ( ) and ( ) are finite and equal , ( )  and ( )A A A AT x A D f x D f x D f x D f x+ −

− +=  = − =  , 

 : ( ) and ( ) are finite and equal , ( )  and ( )A A A AU x A D f x D f x D f x D f x− +

+ −=  =  = −  

and  : ( ) ( )  and ( ) ( )A A A AV x A D f x D f x D f x D f x+ −

− +=  = =  = = − . 
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Then  A N S T U V E=       , where E is a null set and ( )( ) 0m f E = . 

Moreover, m(N) = 0 and f is a Lusin function on S T U  .  

 

The next result is used in the proof of Theorem 11. 

 

Theorem 15.   Suppose :f A →  is a finite valued function.  Suppose B is a subset of A 

such that at each point x of B, f has either both finite Dini derivates on the same side or finite 

bilateral derivates ( ) or ( )A AD f x D f x . Then, f is differentiable almost everywhere on B, i.e., 

for almost all x in B, ( )A Df x exists and is finite.  Moreover, for the subset E of B, where 

( )A Df x does not exists,  ( )*( ) * ( ) 0m E m f E= = .  f is a Lusin function on B.  

 

(See Theorem 11 of “Denjoy Saks Young Theorem for Arbitrary Function”.) 

 

Note that ( ) ( )min ( ), ( ) ( ) and max ( ), ( ) ( )D f x D f x D f x D f x D f x D f x+ −

+ − = =  the lower and 

upper derivate of f at x respectively 

 

 

Theorem 16.  Suppose f : [a, b] → R is a real valued function defined on the closed and 

bounded interval [a, b].  Then the set of points at which f assumes a strict maximum or 

minimum is at most denumerable. 

 

Proof.  Let E be the set of points, where f assumes a strict maximum.   For any such local 

maximizer x in E, there exists an integer n such that for all y  x in (x − 1/n, x + 1/n), f (y) <  f 

(x).  Moreover, it is obvious that (x − 1/n,  x + 1/n) cannot contain more than one maximizer.  

Consequently, the collection An = { x E :  f (y) <  f (x) for all y in (x − 1/n,  x + 1/n)} is a set 

of isolated points.  Therefore, An is at most denumerable. This can be seen as follows.  The 

collection C ={(x − 1/(2n),  x + 1/(2n) ) : x  An } is a collection of disjoint open intervals 

covering An , such that each interval (x − 1/(2n),  x + 1/(2n) ) contains exactly one point in     

An .  Since the set of real numbers is of the second countable, the collection C is at most 

denumerable.  Now 
1

n

n

E A


=

=   and so it follows that E is at most denumerable.   In a similar 

way we can show that the set of strict local minimizers is at most denumerable.  Therefore, 

the union of these two sets is at most denumerable.  This means that the set of points at which 

f assumes a strict maximum or minimum is at most denumerable. 

 

 

Variation of Theorem 1. 

 

Theorem 17.  Suppose f : [a, b] → R is a  continuous function.  Suppose E is a measurable 

subset of [a, b] such that at each point x outside of E, f is differentiable, i.e.,   f ' (x) exists 

finitely and that the Lebesgue measure of f (E), m( f (E)), is zero. 

Let P+ = { x  [a, b] − E: f ' (x)  0} and suppose further there exists a function g : [a, b] → R 

such that  

                                        f ' (x)  g(x) 

for x  P+ and g is integrable or summable on P+.  Then f is absolutely continuous. 
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Proof.  Exactly as in the proof of Theorem 1, we apply Lemma 3 to conclude that for any 

partition Q: a = x0 < x1  < xn = b, of [a, b], the positive variation p(Q) satisfies,         

 

    ( ) ( )( )1 1

1 1

( ) max ( ) ( ),0 * ( , )
n n

i i i i

i i

p Q f x f x m f x x P− − +

= =

= −     

                  
1 1( , ) ( , )

1 1i i i i

n n

x x P x x P
i i

f f
− + − + 

= =

  =                        

                 
1( , ) ( , )

1 i i

n

x x P a b P
i

g g
− + + 

=

 =  . 

                    

Hence, f is of bounded positive variation.   Since f is continuous, f is of bounded variation.  

By Lemma 4, f is a Lusin function or N function.  Hence, f is a continuous function of 

bounded variation which is also a Lusin function.  Therefore, by the Banach Zarecki 

Theorem, (see Theorem 8 of  “Functions Having Finite Derivatives, Bounded Variation, 

Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem” for 

arbitrary function see Theorem 4 of “Absolutely Continuous Function on Arbitrary Domain 

and Function of Bounded Variation” ),  f is absolutely continuous. 

 

Theorem 18 (Banach). 

Suppose f : [a, b] → R is a  continuous function.  Then f is absolutely continuous if, and only 

if, f is a N function and that f ' is Lebesgue integrable on P+ = {x  [a, b] : f ' (x) exists finitely 

and f ' (x)    0}, i.e.,  

                                          
P

f
+

   . 

Proof.  If f is absolutely continuous, then of course, f is of bounded variation and a N function 

(see Lemma 2 and Lemma 3 of “Absolutely Continuous Function on Arbitrary Domain and 

Function of Bounded Variation”).   Since f is of bounded variation, f is differentiable almost 

everywhere and f ' is Lebesgue integrable on [a, b] and so on P+. 

 

Conversely, suppose f is a N function and that f ' is Lebesgue integrable on P+ .  Then by 

Theorem 10, f is T2 .  Let :[ , ]g a b → be the function equal to f on P+ and equal to 0 outside 

of P+ .  Let E  = {x  [a, b]:  f ' (x) = + }.  By the Denjoy-Saks-Young Theorem (Theorem 

14), m(E) = 0.  Since f is a N function, m(f (E )) = 0.  For x   E   if ( )f x exists, then 

( ) ( )f x g x  .  By Theorem 13, f   is of bounded variation.  Hence f is a continuous Lusin 

function of bounded variation and so it is absolutely continuous by the Banach Zarecki 

Theorem.   

 

Theorem 19. 

Suppose f : [a, b] → R is a  continuous N function.  Then f must be differentiable at every 

point of a set of positive measure. 

Proof.  By Theorem 10, f satisfies Banach condition T2 on [a, b].  Suppose no subset of 

differentiability has positive measure. Let { : ( ) is finite and ( ) 0}P x f x f x+
 =   and 

{ : ( ) is finite and ( ) 0}P x f x f x−
 =  . Then ( ) 0m P+ =  and ( ) 0m P− = .  Since 

({ : ( )  or ( ) }) 0m x f x f x = + = − = , ( )(( ) ( , )) 0m f P I c d+ +  =  and 

( )(( ) ( , )) 0m f P I c d− −  =  for ( , ]c a b .  It follows by Lemma 12, that for any ( , ]c a b , 

( ) ( )f c f a= .  Hence, f must be a constant function, and so f is differentiable on (a, b) with 
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positive measure, contradicting that no subset of differentiability has positive measure.  

Therefore, f must be differentiable (finitely) at every point of a set of positive measure. 

 

 

Proof of Theorem 8. 

By Theorem 9, there is a subset C such that both g and F g are differentiable at every point 

outside C, and  

                                     ( ) ( ) ( ( )) ( )F g x f g x g x =  

for x not in C. 

Moreover, if ( ( )) ( )f g x g x is integrable on D = {x [a, b]: g'(x) exists finitely}, then ( )F g 

is integrable on [a, b] − C.  

Now, C L K=  .  F g  and g are not differentiable finitely or infinitely at every point in K.  

Note that L and K are disjoint.   Since ( )( ) 0m F g L = , on the subset M of L, where F g  is 

differentiable, ( ) ( ) 0F g x =  almost everywhere on M.  In L − M, F g  is not 

differentiable.  We may replace L by M.  We may remove the subset of measure zero, where 

( ) ( ) 0F g x   from M. Thus, we may assume that ( ) ( ) 0F g x =  on M.  Let A be the 

subset of [a, b] where g is not differentiable or ( )g x =  .  If x is in M A− , then ( )g x  

exists finitely and either ( ( ))F g x  does not exist or ( ( )) 0F g x = .  Then, on the subset of 

M A− , where ( ( ))F g x  does not exist, ( ) 0g x =  almost everywhere.  Removing the 

appropriate subset from M, we may assume that when ( ( ))F g x  does not exist, ( ) 0g x = .  If 

x is in M A , then  ( )g x  does not exist or ( )g x =  . 

Hence, ( ) ( ) ( ( )) *( )F g x f g x g x =  almost everywhere outside K.   Note that F g  and g are 

not differentiable finitely or infinitely at every point in K.   By hypothesis, the integral 

( ( )) *( )
D

f g x g x dx exists.  This implies that ( ) ( )
P

F g x dx
+


   , where 

( ){ [ , ] : ( ) 0}P x a b F g x+
=    . 

Then by Theorem 18, F g is absolutely continuous.  Therefore,  

                       ( ( )) ( ( )) ( ) ( ) ( ) ( )
b

a D
F g b F g a F g x dx F g x dx − = =   

                                                      ( ( )) *( ) ( ( )) *( )
b

D a
f g x g x dx f g x g x dx= =  .  

Consequently, 
( )

( )
( ) ( ( )) *( )

g b b

g a a
f x dx f g x g x dx=  . 

 

Remark.  Observe that for x outside of C, ( )( ) 0 ( ) 0g x F g x    .  Hence, 

( ) ( ) ( ( )) *( )F g x f g x g x = almost everywhere outside C.  ( ( )) *( )
D

f g x g x dx  exists implies 

that 
0

( ( )) *( )
D

f g x g x dx  is finite where 0 { : ( ) exists finitely and ( ) 0}D x g x g x =  .  Hence,  

( )
0

( )
P

F g x dx


  , where ( )0 { : ( ) 0}P x F g x=   and so  ( ) ( )
P

F g x dx
+


  . 

 

In "Change of Variables Theorems", I made a remark after Theorem 1, querying if there are 

integrable function f and finite function g not having finite derivatives almost everywhere on 
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[a, b] such that F  g is absolutely continuous on [a, b] but (F  g)' (x)   f  (g(x)) g'(x) almost 

everywhere on [a, b].   Goodman in "N-Functions and Integration By Substitution, Milan 

Journal of Mathematics vol 47 (1977) 123-134," gave such an example due to Ruziewicz, 

where g is a function not differentiable on a set of positive measure but its square g 2 is 

absolutely continuous on [0,1].  However, we can make some interesting observation as 

follows. 

 

Theorem 20.  Suppose g: [a, b] → R is a finite function f : [c, d] → R is a Lebesgue 

integrable function such that the range of g is contained in [c, d].  Let F: [c, d] → R be 

defined by ( ) ( )
x

c
F x f t dt=  .  Suppose F g  is absolutely continuous on [a, b]. 

Then ( ) ( ) ( ( )) *( )F g x f g x g x =  almost everywhere on [a, b], where 

                          
( ),   when ( ) exists (finitely),

*( )
0 ,  when ( ) does not exist or is infinite

g x g x
g x

g x

 
= 


, 

( ( )) *( )f g x g x  is Lebesgue integrable on [a, b] and  

              
( )

( )
( ) ( ( )) *( ) ( ( )) ( )

g b b

g a a D
f x dx f g x g x dx f g x g x dx= =   , 

where D = {x [a, b]: g' (x) exists finitely.}. 

Proof.   

Since F is an indefinite integral of an integrable function, F is absolutely continuous.  

Therefore, F is a N function, differentiable almost everywhere on [c, d] and F' (x) =  f (x) 

almost everywhere on [c, d].     

Let E = {x  [c, d]:  F' (x) does not exist finitely or F' (x) =   or F' (x)   f (x)  Then m(E) 

= 0 since m{x :  F' (x) =   } = 0 by the Denjoy-Saks-Young Theorem (Theorem14).  It 

follows that for x in [c, d] − E, F' (x) exists finitely and  F' (x) = f (x).   Let E 0 = {x  [c, d]:  

F' (x) = 0}.  By Theorem 3 of "Functions having Finite Derivatives, Bounded Variation, 

Absolute Continuity, the Banach Zarecki Theorem and de La Vallee Poussin's Theorem", m(F 

(E0 )) = 0.  Since F is a N function, m(F(E )) = 0.  Consequently, m(F (E0  E )) = 0.  Let        

B = g − 1(E0  E).  Suppose A = {x  [a, b]: g'(x) does not exist finitely or infinitely}.  If          

x  [a, b] − A, then either g'(x) is finite or g'(x) =  .   

Observe that ( ) ( ) ( ( )) ( )F g x f g x g x = for x in [a, b] − (AB).   

We now examine the derivative of F g  on AB.  By hypothesis F g  is absolutely 

continuous and so F g is differentiable almost everywhere on [a, b]. 

Now for x in A − B, g(x)  E0  E and so we have that F is differentiable at g(x) and   

F'(g(x)) = f (g(x))  0.  But for x in A − B, g'(x) does not exist finitely or infinitely.  It follows 

that for x in A − B, ( ) ( )F g x does not exist finitely or infinitely.  Since F g is 

differentiable almost everywhere on [a, b], A − B must be of measure zero.  Thus, we may 

assume without loss of generality that A  B.  (We may simply remove the set A − B of 

measure zero from A.) 

Next, we examine the set B.   Since g(B)  E0  E and m(F (E0  E )) = 0, it follows that

( )( ) 0m F g B = .  Since  F g  is differentiable almost everywhere on B, it follows then by 

Theorem 2 of "Change of Variables Theorems", that ( ) ( ) 0F g x = almost everywhere on B.   

Hence ( ) ( ) 0F g x =  almost everywhere on A. 
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Consider g − 1(E) − A.  Since m(g(g − 1( E) − A)) = 0 and g is differentiable finitely on                          

g − 1( E) − A, by Theorem 2 of "Change of Variables Theorems",  g'(x) = 0 almost everywhere 

on g − 1( E) − A. 

Note that for x in g − 1(E0) − (g − 1(E) A), g'(x) exists finitely and f (g(x)) = 0.  Consequently, 

( ) ( ) ( ( )) ( ) 0F g x f g x g x = =  almost everywhere on B − A.  It follows that

( ) ( ) ( ( )) *( )F g x f g x g x =  almost everywhere on B.  Hence, ( ) ( ) ( ( )) *( )F g x f g x g x =

almost everywhere on [a, b].  Therefore, ( ( )) *( )f g x g x is Lebesgue integrable on [a, b] and  

                ( )
( )

( )
( ) ( ( )) ( ( )) ( )

g b b

g a a
f x dx F g b F g a F g x dx= − =   

                                   ( ) ( ) ( ( )) *( )
D D

F g x dx f g x g x dx= =  , 

where D = {x [a, b]: g' (x) exists finitely.} since [a, b] − D = A and ( ) ( ) 0F g x =  almost 

everywhere on A. 

This completes the proof. 

 

There is a partial converse to Theorem 20.  We impose the requirement that g be a continuous 

N function. 

 

Theorem 21.  Suppose g: [a, b] → R is a continuous N function and f : [c, d] → R is a 

Lebesgue integrable function such that the range of g is contained in [c, d].  Let F : [c, d] → 

R be defined by ( ) ( )
x

c
F x f t dt=  .  Suppose ( ( )) *( )f g x g x is Lebesgue integrable on D = {x 

[a, b]: g' (x) exists finitely.}, where 

                   
( ),   when ( ) exists (finitely),

*( )
0 ,  when ( ) does not exist or is infinite

g x g x
g x

g x

 
= 


  . 

Then F g is absolutely continuous on [a, b] and        

                   
( )

( )
( ) ( ( )) *( ) ( ( )) ( )

g b b

g a a D
f x dx f g x g x dx f g x g x dx= =   . 

 

Proof.  This is just Theorem 8.  We deduce as in the proof of Theorem 8 that under the 

hypothesis of Theorem 21, F g  is absolutely continuous on [a, b].  The remaining 

conclusion then follows from Theorem 20. 

 

 

Remark.  Note that the integrability of ( ( )) *( )f g x g x  is not sufficient to ensure that F g   

is absolutely continuous on [a, b].  Take for example, f (x) = 2x and g to be the Cantor ternary 

function.  Then g is increasing and continuous, g ' = 0 almost everywhere on [0, 1] but g is 

not absolutely continuous on [0, 1] and therefore not a N function.  2F g g= and g 2 is not 

absolutely continuous on [0, 1].  With the terminology of Theorem 21, we can observe this by 

noting that ( ( )) *( ) 0f g x g x =  almost everywhere on [0,1] but g 2 is not constant. 

 

Corollary 22.  Suppose g: [a, b] → R is an absolutely continuous function and f : [c, d] → R 

is a Lebesgue integrable function such that the range of g is contained in [c, d].  Let F : [c, d] 

→ R be defined by ( ) ( )
x

c
F x f t dt=  .  Suppose ( ( )) *( )f g x g x is Lebesgue integrable on D = 

{x [a, b]: g' (x) exists finitely.}, where 
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( ),   when ( ) exists (finitely),

*( )
0 ,  when ( ) does not exist or is infinite

g x g x
g x

g x

 
= 


  . 

Then F g is absolutely continuous on [a, b] and        

                   
( )

( )
( ) ( ( )) *( ) ( ( )) ( )

g b b

g a a D
f x dx f g x g x dx f g x g x dx= =   . 

 

Proof.  If the function g is absolutely continuous, then it is a continuous N function.  The 

corollary then follows from Theorem 21. 
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