
The Integers
To allow for the use of arithmetic, we would
then introduce the notion of negative numbers.    
View negative numbers as the solution to the
linear equation,    

                       x + n = 0

for each counting number n.  

For this approach, of course the notion of zero
would have to be introduced.   It satifies the
following: 

        

m + 0 = m for all counting numbers m

 and 0 + 0 = 0.                           



So we assume the existence of such a number
zero 

This is a very important number and we should
indeed construct the counting numbers together
with zero. 

We can view the existence of the negative
numbers as guaranteed by construction.  

Thus the integers consist of the counting
numbers, their negatives and zero.

Ordering comes naturally with the counting
numbers together with zero.  Successor comes
after each number, starting from zero. 
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The Rational Numbers

A ratio of  1 : n  gives a fraction   for each1
n

counting number n.  

Then addition of  m of this   means .  This1
n

m
n

representation is not unique we have to allow
for cancellation as means the same as .1

2
2
4

 We say   and  are the same if and only if  a da
b

c
d

= b c.  We write  when this happens. a
b = c

d

We can define negative fractions as similar to
how we define integers as the solution  x + r = 0
for each fraction  r.  The collection of the
fractions, their negatives and zero constitute the
rational numbers  Q.  
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Ordering does not come easily this time with the
rational numbers.  The set of "positive" rational
numbers has the following properties.  It should
of course contain the counting numbers.  For
any two "positive" rational numbers p and q,

A.    p + q  is again a "positive" rational
number and

      B.   p q  is again a "positive" rational
number.

Notice that the counting numbers satisfy these
two properties.  

This meaning of "positive" is artificial and
unnatural.  It does apply to the counting
numbers.  Property B involves multiplication.  It
is easily seen that multiplication of a counting
number by − 1 gives a negative integer and so
multiplication of a fraction gives us a negative
rational number.
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We now additionally insist that this set of
"positive" rational numbers, together with its
negative, that is the set consisting of the result
of multiplying each "positive" rational numbers
by -1, and zero form the entire set of the rational
numbers.

We have a candidate for this set of "positive"
rational numbers and it is unique. Our
construction of the rational numbers involves
the following ingredients, the fractions, their
negatives and zero.  Plainly the negative
fractions are the result of multiplication of the
fractions by −1.  Obviously the fractions satisfy
Properties A and B.

This definition of "positive" would capture the
essence of the meaning of positive.  Note that 1
is "positive", a notion we would accept readily.
But with the new meaning, it would require
some thought.  We would use a contradiction
argument to show this. 
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If 1 is not "positive", then it's negative −1 would
be "positive" and by Property B, (−1)(−1) = 1
would be "positive", contradicting our
assumption that 1 is not "positive". 

Then by Property A, all the counting numbers,
being defined successively by adding 1, are
"positive".  

Also note that for any counting number n,   is1
n

"positive".  This can be verified as follows.  If  
 is not "positive", then  is the multiplication1

n
1
n

of a "positive" number by −1 because it is not 0.
 Thus   is "positive" and so since n is−1

n
"positive",   would be "positive"  by−1 = −1

n $ n
Property B contradicting −1 is not "positive".
Therefore, we conclude that   is "positive".  1

n
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It then follows from Property B that any fraction
  is "positive" for any counting numbers mm
n

and n, since .m
n = m $ 1

n

Thus our fractions are "positive".  Then the
"positive" rational numbers are precisely the
fractions. 

This is because if there is a "positive" number  p
not a fraction, then since p ≠ 0 ,  − p is a fraction
and so − p is "positive" (since any fraction is
"positive") and so p is not "positive"
contradicting  p is "positive". 

We call this subset of "positive" rational
numbers,  a  positive cone.  It is precisely the set
of fractions.
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The positive cone or the fractions would serve
as a kind of reference for the ordering.  It is a
natural division of the rational numbers into two
parts, a special part that decides the "direction"
of an ordering and another.  There is always a
division of the rational numbers at any point
into the 'left' and 'right'; what we needed is a
reference point, zero, and a translation operation
to give meaning to 'left' and 'right'.

For any two rational numbers a and b,

we say a is greater than b ( a > b) 

if and only if a − b is "positive", 

i.e., a − b belongs to this special part.
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This ordering is consistent with the ordering on
the counting numbers.  This is seen as follows.
For any counting number n,  n + 1 > n because
(n + 1)− n = 1 is "positive".  Since n +1 is the
successor of n, this ordering is consistent with
the previous ordering determined by the
sequence of successor followed by successor.
In particular for any fraction r,  r > 0 because r
− 0 = r is "positive".  If we now define any
rational number r to be positive when r > 0, then
positive would mean the same as "positive".
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What We Would Like the Real
Numbers to Possess

If we can view the real numbers as the extension
of the rational numbers, then we would want the
properties that the rational numbers possessed
that are so useful, to carry over to this extension.
We shall describe in abstract terms these
properties.

The rational number system is an example of a
mathematical object ---- a  field. 

It is a set  F that comes with 

two binary operations called addition (+) and
multiplication (×), 

two unique elements called respectively 0 and 1,
two unary operations, 
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one on F denoted by − :F → F and the other on
F − {0}, denoted by *: F−{0}→F−{0}satisfying
the following  9  properties.

For  all a in F,
                  1.    a + 0 = 0 + a = a ;
                  2.    a + (− a) =  (− a) + a = 0.
       For all  a, b and c in F,
                  3.    a + (b + c) = (a + b) + c;            

                                     (Associativity)
                  4.    a + b  = b + a;                               

                                     (Commutativity)
                  5.    a(b + c) = ab + ac.                    

                                      (Distributivity)
For all a in F − {0},

                  6.    1 × a = a × 1 = a
                  7.    a × (*a) = (*a) × a = 1.

For all  a, b and c in F− {0},
                  8.    a  × (b × c) = (a × b) × c;         

                                    (Associativity)
                  9.    a × b = b × a.                                

                             (Commutativity) 
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The unary operation *  for the rational numbers
Q corresponds to taking reciprocals on non zero
rational numbers.  The other operations are
suggestive of the symbols.

A totally ordered field  F  is a field  F  together
with a positive cone P such that

0 does not belong to P ,  the union of P, its
reflection −P = {− a : a belongs to P} and {0} is
equal to F and P satisfies the following two
properties that for all a and b in P,

          (A)   a + b belongs to P  and

          (B)   a × b belongs to P.

The ordering,  '>' , called a total ordering on F ,
is defined by b > a if and only if b − a belongs
to P.  Thus for any x in F,  x > 0 if and only if  x
belongs to P.
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The rational numbers Q satisfy all the 9
properties with the usual operations of addition,
multiplication, taking negatives and reciprocals
and has the total ordering described earlier with
the (positive) fractions as the positive cone.  

To see the desirable property the real number
system should possess, we may have to reinvent
the whole system of representing numbers.

Take for instance  √2  the square root of 2.  Is
this a number?  Geometric intuition says it is.
One thing is sure - we can find fractions as close
to √2 as we like 'before' and 'after' √2.  We
approximate" √2 by fractions.  We cannot pin
down √2 as a rational number.  It is not a
symbol readily understood as − 2 or .  But1

2
what we can say is this.  If there is such a
number, then its square would give us the
integer 2.  
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We can be bold.  We can extend, in any sense as
we would, our rational numbers to some system
containing the solution of the equation  x2 = 2.
But then we would just open up a Pandora's
box.  What about  , p a prime3 , 5 , 7 , ..., p
and so on?  It is well-known none of these can
be rational numbers.  What about cube root of
2?  These are solutions to polynomial equation
of the form

xn = p where p and n are counting numbers. 

What about solution to all polynomial
equations?  It then becomes an impossible task
to describe all these "numbers".  In particular
there are "numbers" that are not the solution of a
polynomial equation such as the Euler constant
e and π.  So extending our rational numbers this
way would not include these numbers.  But
what is plausible is that no matter what their
origins may be, there are rational numbers as
close to these numbers as we like 'before' and
'after' these numbers.  This forms the basic
concept of the cut of Dedekind.  We have to
think of numbers differently as if there is a
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hierarchy of numbers.  We may not know what
√2 is but we know there are rational numbers as
close as we like on the 'left' of it or less than it if
we can give an ordering on our set of real
numbers.  This gives enough information about
√2 for all practical purposes.  Indeed, it is a
collection of rational numbers that can give us
all the information we required about √2.
Hence we need a collection of rational numbers
to describe a number.

We say the totally ordered field F has the
Archimedean Property if for all x > 0  in F,  and
for all  y > 0 in F,  there exists a counting
number n such that

 (n1)× x > y.

We can rewrite the last inequality as    1
n1 % y < x

or    What this says is that given(&(n1)) % y < x.
any x and y > 0 in F, no matter how small x is,
we can find a counting number n such that 

 if we identify   with .  Obviously1
n % y < x 1

n
1
n1

the rational numbers Q has the Archimedean
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Property.  This is a property that we would wish
the real numbers to have.

We would need to add a new property that
would tell us that the set of real numbers does
exist in a different sense.  We know there are
rational numbers arbitrarily bigger than √2.  We
can think of all the rational numbers below or
less than √2.  In a way √2 would be the largest
such number if it exists, bigger than all the
rational numbers below √2.  The existence of
such a number would have guaranteed the
meaning of √2.  But of course we would have to
think of rational numbers in a different way.  To
describe more precisely what we mean, we
make the following definition.
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Consider a subset A of F.   

A is said to be bounded above

if there exists x in F such that for all a in A, a ≤
x. 

We say A is bounded below if there exists y in F
such that for all a in A, y ≤ a. 

The number x is called an upper bound for A
and y a lower bound for A.  We say A is
bounded if it is both bounded above and
bounded below.

If A is bounded above, then it has an upper
bound.  It is natural to ask if it has the smallest
such upper bound.  That means if M is the
smallest such upper bound, then of course M is
in F and for any x in F with x < M, x cannot be
an upper bound for A and so consequently, there
exists a a0 in A such that x < a0.  
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Definition 1.  M is the least upper bound or
supremum (sup) of a subset A of F if  for all a in
A, a ≤ M and for any  x < M, there exists b in A
such that x < b.

A more descriptive way of describing M is
this:  For any number x less than M, we can
always find an element b in A such that x < b ≤
M.

Similarly we can define the greatest lower
bound or infimum of A.

Definition 2.  m is the greatest lower bound
or infimum (inf ) of a subset A of F if  for all a in
A, m ≤ a and for any  x > m,  there exists b in A
such that b < x.

We can thus characterize m by saying that
for any x > m, we can always find an element  b
in A such that  x > b ≥ m
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The notion of supremum or infimum would be
in vain if they do not exist.  We would like them
to be included in our consideration.  A totally
ordered field in which every bounded subset has
an infimum and a supremum is special in that
the boundaries of the bounded subsets are
elements in the field.  This prompts the next
important definition.

Definition 3.   A totally ordered field F is
complete if every non-empty bounded above
subset of F has a supremum (in F).

The significance of this definition is that the
supremum is a member of F.  That means any
bounded above subset has its 'upper' boundary
residing in F and there is no room for a gap to
exist in F.

The term 'complete' has several meanings.
The present meaning is sometimes referred to as
order complete.  

Chapter 1 Integers to Real  Numbers

19
©Ng Tze Beng



This property is new.  It is desirable for √2 to
have a meaning. 

The rational numbers Q is not complete.  Take
for example the subset

          A = {x in Q: x > 0 and x2 <2 } of Q. 

It does not have a supremum (in Q).  Note that
we cannot as yet write √2 as its existence has
not been established.  We can only talk about it
hypothetically.  That √2 is not a rational number
can easily be shown.   Thus √2 will belong to a
different scheme of things.  A is plainly bounded
above for we see that for any a in A a < 2.  We
shall now show that A has no supremum in Q.

Suppose A has a supremum M.  

Then M ≥ a  for all a in A and that if  k < M,
then there exists b in A such that k < b.  

By definition of A,

                   a2 < 2  for all a in A.

Also a2 ≤ M 2 .  
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We can compare  M 2  and 2 to produce a
contradiction.  

Suppose M 2  > 2. 

Then   since plainly M +2 > 0.M2 − 2
M + 2 > 0

Let  . k = M − M2 − 2
M + 2 = 2M + 2

M + 2
Then  k < M.  

Note that 

k2 − 2 =
4(M + 1)2 − 2(M + 2)2

(M + 2)2 =
2(M2 − 2)
(M + 2)2 > 0

since M 2  > 2.  

Thus k 2  > 2.  But since  k < M, there exists b in
A such that k < b.  

Thus k2 < b 2 < 2.  This contradicts k 2  > 2.   

Therefore, M 2  ≤ 2 . 

Since M 2 ≠ 2 because M is a rational number,  
M 2 < 2.

We shall now derive another contradiction. 
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So we have 2− M 2 > 0. 

Let now .  Then k  > Mk = M + 2 − M2

M + 2 = 2M + 2
M + 2

 

Also   since M 2 < 2. k2 − 2 =
2(M2 − 2)
(M + 2)2 < 0

Therefore, k 2  < 2.  Hence k belongs to A and so  
                          k ≤ M .  

This contradicts k  > M.  Consequently, these
two contradictions imply that M = sup A does
not exist.

The following is a variation or equivalent definition for completeness.  First, note that for
any non-empty bounded below subset A of F,  −A = {−a: a belongs to A} is bounded above.  In
particular, inf A = −  sup (− A).  Thus if the supremum exists for any non empty bounded above
subset of F, then the infimum too exists for any non-empty bounded below subset of F.

Definition 3'.   A totally ordered field F is complete if every non-empty bounded below
subset of F has an infimum.

It is clear from the above that Definition 3 implies Definition 3'.  It can be similarly
observed that for any bounded above subset A of  F,  −A = {−a: a belongs to A} is bounded
below and sup A = − inf (− A).  This will supply the argument for proving that Definition 3'
implies Definition 3.

If we assume we know how to construct the real numbers, then the following tells us just
what it is.
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Theorem 1.  The real numbers R is a complete
totally ordered field.

(For a partial proof of this, see 10.14 on page 87 of K, G, Binmore, Foundations of
Analysis: A straightforward Introduction Book 1 Logics, Sets and Numbers.   He
makes use of the Dedekind cuts on Q+  to construct R+ and proved that any
bounded above subset in R+ has a supremum.  Chapters 9 and 10 are particularly
useful if you want to follow up on axioms and construction.  The completeness
axiom is also called the continuum axion there.  For a fuller account, see the link    
http://www.math.nus.edu.sg/~matngtb/Calculus/Realnumbers/Real_Chapter2.htm  
)

There is essentially one such complete ordered
field.  This is not to say that there is exactly one
such complete totally ordered field but that any
two are isomorphic.  We interpret this to mean
that for all intent and purposes they are the same
although they may be constructs of a different
nature.

Proposition 2.   The real numbers R has the
Archimedean Property.  

That is to say for any x, y > 0 in R, there is a
counting number n  such that n x > y --------  (*).
(Here we are using the notation inherited from
the rational numbers.)
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When a totally ordered field has the
Archimedan Property, we say it is archimedean.
               Thus R is archimedean.  

Proof of Proposition 2.   We shall prove
Proposition 2 by contradiction.
   
Suppose R is not archimedean.  Then by
negating the statement (*), we get

there exists x, y > 0 such that for all counting
number n,  n x ≤ y. ------ (**)

Take the set  K = { n x : n a counting number}.  

Then by (**) K is bounded above by  y  and is
non-empty.

Because R is complete, the supremum M of K
exists. 

Hence for any counting number n,   n x ≤ M  
since n x belongs to K.  

Now (n + 1)x belongs to K too.  

Therefore, (n + 1)x ≤ M.   That means

n x ≤ M − x
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Thus for any counting number n,

     n x ≤ M − x < M.    -------------------    (***)

Thus M − x  is an upper bound for K. 

Because M − x < M and that M is the supremum
of K, there is an element  n0 x  in K, for some
counting number n0, such that

                           M − x < n0 x. 

But by (***)  n0 x ≤ M − x.  This contradicts  M
− x < n0 x.  Therefore, R is archimedean.

Real numbers are hard to think of conceptually.  When we say take a small number ε > 0,
we like to think of ε as a rational number since we are more comfortable with the rational
numbers.  For all practical purposes, this is what we need to think of ε.  We may indeed just say
take a small rational number ε > 0 instead.  The following justifies this.

Corollary 3.  For any ε > 0, there is a counting
number n such that .

1
n <

Proof.  By the Archimedean Property of R,
there exists a counting number n such that 

     n ε > 1.  Therefore,  .1
n <

Note that  is a rational number.  So the Corollary says that for any ε > 0, no matter how1
n

small ε is, we can find a rational number  such that  .  So for all pratical purposes, in1
n 0 < 1

n <
place of ε, we can use  instead.  1

n
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Now that we have recognised a class of numbers which consists of numbers that are not
rational numbers and that there is an ordering that applies to the whole of R, we might ask
ourselves the question, "How often can we find a rational number or for that matter, irrational
number ?"  Very often is the answer.  In mathematical terms we mean the rational numbers or the
irrational numbers are dense.  The following Corollary gives meaning to the term 'density of the
rational numbers'.

Corollary 4.   For any x and y in R and x < y,
there exists an integer n and a counting number
m such that  .x < n

m < y
A descriptive way of stating Corollary 4 will be "between any two real numbers there is a
rational number".

Proof of Corollary 4.  The proof goes like this.
Take two real numbers x and y such that x < y.
Then y − x > 0.  

It follows by Corollary 3 that there is a counting
number m such that . 1

m < y − x

The rest of the proof will be divided into 3
cases. 

The easiest case will be when x = 0.  
Then we have  and so the required0 < 1

m < y
rational number is   for this case. 1

m
The second case is when x > 0.  We now invoke
the Archimedean Property of R.  
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By this property there is a counting number n,
such that                             

                                  .  n 1
m > x

Having established the existence of such an
integer n, we can then by successively taking
one away from this number n to obtain the least
integer n such that .  n 1

m > x

That means  .  (n − 1) 1
m [ x

Therefore,

 y = ( y − x) + x > .1
m + (n − 1) 1

m = n
m > x

For this case, the required rational number is       
                             .  n

m
The remaining case is for x < 0.  That is   −x > 0.

Then by the Archimedean property there is a
counting number n such that .  n 1

m > −x

As before we choose the least integer n such
that                           .  n 1

m m −x
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Then we have .  (n − 1) 1
m < −x

Therefore,
y = ( y − x) + x > .1

m − n
m = (1 − n) 1

m > x

For this case the required rational number is        
                              .  1 − n

m
Having established the density of the rational numbers, we expect that the irrational

numbers are also dense in R.  More is true here.  The irrational numbers are more numerous than
the rational numbers.  This statement will make sense only when we have some means of
"measuring" subsets of the real numbers.  Indeed, the "measure" of the set of rational numbers is
zero but not so for the set of  irrational numbers.  We would need a theory of measure to
establish this.  The fact that R is uncountable and the rational numbers Q is countable gives us
some idea of the difference in "size" of the set of irrational numbers and the set of rational
numbers.  A set is said to be countable if we can match its elements one to one with elements of
the counting numbers.  It can be shown that Q is countable though not finite.  But it is much
harder to show that R is not countable.  One can do this by showing that the real numbers
between 0 and 1 is not countable.  This can be shown by way of contradiction.  First, by
assuming that we have a matching function from the counting numbers to the real numbers
between 0 and 1 and thus we can write them as a sequence.  Then by assuming that each term of
this sequence can be written as an infinite decimal and using this sequence of infinite decimals to
produce a number different from any term of this sequence and thus showing that we can never
have a matching function.  This approach will need some criterion to distinguish infinite
decimals converging to different limits.  For now we are content with the following.

Corollary 5.  For any two rational numbers a
and b with a < b, there is an irrational number α
such that a < α < b.

Proof.  The proof of this Corollary is by
actually producing the required irrational
number α by making use of a known irrational
number. 
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Take an irrational number k  > 0.  For instance
we can take k = √2. 

By the Archimedean Property of R, there is a
counting number n  such that  

                           n (b − a) > k. 

That is,                 .a + k
n < b

Then  .  a < a + k
n < b

Since k is irrational,  is also irrationala + k
n

because a is rational and  is irrational.k
n

Take  α =  to be our required irrationala + k
n

number.  This establishes the truth of this
corollary.

Remark.  Note that we actually use the
rationality of a.  Thus for any a < b, a and b
real, apply Corollary 4 to get a rational number
a’ such that a < a’ < b.  Then apply Corollary 5
to get an irrational number between a and b.

We can expect to find an integer between x and x +1 for any real number x.  This is stated
more precisely as follows.
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Corollary 6.  For any real number x, there is an
integer n0 such that x < n0 ≤ x + 1.

Proof.  If x is an integer, then we only have to
take n0 to be x + 1. 

Now assume x is not an integer.

Suppose x > 0.  Then by the Archimedean
Property of R, there is a counting number n such
that n = n×1 > x.

Then take the least such integer N with N > x.
Thus we have  N −1 ≤ x. 

Therefore, we have x < N ≤ x + 1. 

So take n0 = N.  

Observe that we actually have x < N  < x + 1,
since x + 1 is not an integer. 

Now for the case x is not an integer and x < 0.
Then as before there exists an integer M such
that −x < M < −x +1. 

Thus x −1 < − M < x  and so x < − M +1 < x + 1.
For this case take n0 = 1−  M . 
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