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Introduction. 

The late Frank Adams in his celebrated paper “On the Non-existence of Elements of Hopf 

Invariant One” gave many formulae, though not explicitly, relating to secondary cohomology 

operations.  He gave the celebrated formula for the decomposition of the primary 

cohomology operations, the Steenrod square SQ(2k) for k ≥ 4 by secondary cohomology 

operations, which are now known as the Adams operations i,j , j ≥ 0, i  j and i  j−1.  Here 

we write SQ(n) for Sqn in the usual notation.   Although he did not give explicit complete 

formula, the decomposition is good enough to solve the Hopf invariant one problem.  

However, for some application, the explicit decomposition is required.  The explicit 

decomposition for SQ(16) and SQ(32)  has been used in solving  problems in H spaces and 

deciding whether a truncated polynomial algebra can be realised as the cohomology algebra 

for an appropriate space.  It is possible to give explicitly a computable formula for the 

relevant coefficients in the most relevant operations in the decomposition of SQ(2k+1), they 

are precisely the coefficients of SQ(2i), 0 i  k.  If 
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for  3k   can be easily verified by evaluation on the appropriate class in the cohomology of 

the infinite complex projective space ( )P   or the infinite quaternionic projective space, 

QP(∞). 

 

1.  The Decomposition for SQ(16), SQ(32) and SQ(64).   

Below I shall give the decomposition for SQ(16), SQ(32) and SQ(64).  The coefficients do 

get longer and longer.  The coefficients, for SQ(32) and SQ(64) are computed and verified 

using REDUCE, whereas that for SQ(16) is easily verified by hand.. 

The relevant Adams operations are listed below by listing the defining relations. 

0,0:  SQ(1)SQ(1) = 0; 
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1,1:  SQ(2)SQ(2) + SQ(3)SQ(1) = 0; 

0,2:  SQ(1)SQ(4) + (SQ(2)SQ(1))SQ(2) +SQ(4)SQ(1) = 0; 

2,2:  SQ(4)SQ(4) + SQ(6)SQ(2) +SQ(7)SQ(1) = 0; 

0,3: (SQ(8)+SQ(4)SQ(4))SQ(1) +(SQ(4)SQ(2)SQ(1)+SQ(7))SQ(2) +SQ(1)SQ(8) =  0; 

1,3: (SQ(9)+SQ(4)SQ(5))SQ(1) + SQ(8)SQ(2) +(SQ(4)SQ(2))SQ(4) + SQ(2)SQ(8) = 0; 

3,3: SQ(15)SQ(1) + SQ(14)SQ(2) +SQ(12)SQ(4) + SQ(8)SQ(8) = 0; 

0,4: (SQ(16)+SQ(8)SQ(8)+SQ(8)(SQ(4)SQ(4))SQ(1) +  

        (SQ(15)+SQ(8)SQ(7)+SQ(8)SQ(4)SQ(2)SQ(1))SQ(2) 

         + SQ(13)SQ(4) + SQ(1)SQ(16) = 0; 

1,4: (SQ(17)+SQ(4)SQ(13)+SQ(4)SQ(2)SQ(11))SQ(1)  

      + (SQ(16)+Q(4)SQ(2)SQ(10))SQ(2)  + (SQ(4)SQ(2)SQ(4))SQ(8) + SQ(2)SQ(16) = 0; 

2,4: (SQ(19)+SQ(8)SQ(11))SQ(1)  +  (SQ(18)+Q(8)SQ(10))SQ(2) 

      + SQ(16)SQ(4)+(SQ(8)SQ(4))SQ(8) + SQ(4)SQ(16) = 0; 

4,4: SQ(31)SQ(1)  +  SQ(30)SQ(2) + SQ(28)SQ(4)+SQ(24)SQ(8) + SQ(16)SQ(16) = 0; 

0,5: (SQ(32)+SQ(16)SQ(16)+SQ(16)SQ(8)SQ(8)+SQ(16)SQ(8)SQ(4)SQ(4))SQ(1) +  

        (SQ(31)+SQ(16)SQ(15)+SQ(16)SQ(8)SQ(7)+SQ(16)SQ(8)SQ(4)SQ(2)SQ(1))SQ(2) 

         +(SQ(29)+SQ(16)SQ(13))SQ(4) + SQ(25)SQ(8) +  SQ(1)SQ(32) = 0; 

1,5: (SQ(33)+SQ(4)SQ(29)+SQ(4)SQ(2)SQ(27)+SQ(4)SQ(2)SQ(4)SQ(23))SQ(1) 

        +  (SQ(32)+SQ(4)SQ(2)SQ(26)+SQ(4)SQ(2)SQ(4)SQ(22))SQ(2) 

        +  (SQ(4)SQ(2)SQ(4)SQ(20))SQ(4) + (SQ(4)SQ(2)SQ(4)SQ(8))SQ(16) 

        +  SQ(2)SQ(32) = 0; 

2,5: (SQ(35)+SQ(8)SQ(27)+SQ(8)SQ(4)SQ(23))SQ(1) 

        +  (SQ(34)+SQ(8)SQ(26)+SQ(8)SQ(4)SQ(22))SQ(2) 

        +  (SQ(32)+SQ(8)SQ(4)SQ(20))SQ(4) + (SQ(8)SQ(4)SQ(8))SQ(16) 

        +  SQ(4)SQ(32) = 0; 

3,5: (SQ(39)+SQ(16)SQ(23))SQ(1)    +  (SQ(38)+SQ(16)SQ(22))SQ(2) 
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        +  (SQ(36)+SQ(16)SQ(20))SQ(4) + SQ(32)SQ(8) + (SQ(16)SQ(8))SQ(16) 

        +  SQ(8)SQ(32) = 0; 

5,5:  SQ(63)SQ(1)  + SQ(62)SQ(2)  + SQ(60)SQ(4) + SQ(56)SQ(8) +  SQ(48)SQ(16) 

        +  SQ(32)SQ(32) = 0;  

The decompositions are as follows: 

SQ(16): 

SQ(16) =  C10,0  + C2 1,1 + C3 0,2 + C4 2,2 + C5 3,3 + C6 1,3 + C7 0,3 , where 

C1  =  SQ(15) + SQ(10)SQ(5) + SQ(13)SQ(2) + SQ(12)SQ(3), 

C2  =  SQ(13)  + SQ(12)SQ(1), 

C3 = SQ(12) + SQ(8)SQ(4), 

C4 = SQ(8)SQ(1) + SQ(6)SQ(3), 

C5 = SQ(1), 

C6 = SQ(7) + SQ(4)SQ(2)SQ(1), 

C7 = SQ(8) + SQ(4)SQ(4). 

SQ(32): 

SQ(32) = A10,0  + A2 1,1 + A3 0,2 + A4 2,2 + A5 3,3 + A6 1,3  

                + A7 0,3 + A8 4,4 + A9 2,4 + A10 1,4 + A11 0,4 , where 

A1 = SQ(31) + SQ(29)SQ(2) + SQ(28)SQ(3) + SQ(27)SQ(4)  + SQ(23)SQ(6)SQ(2) 

        + SQ(21)SQ(7)SQ(3) + SQ(20)SQ(9)SQ(2)  + SQ(20)SQ(8)SQ(3)  

        + SQ(18)SQ(9)SQ(4), 

A2 = SQ(29)  +  SQ(27)SQ(2) + SQ(25)SQ(3)SQ(1) + SQ(25)SQ(4) + SQ(24)SQ(5) 

         + SQ(21)SQ(5)SQ(2)SQ(1) + SQ(21)SQ(7)SQ(1) + SQ(20)SQ(7)SQ(2) 

          + SQ(19)SQ(9)SQ(1), 

A3 =  SQ(25)SQ(3) + SQ(22)SQ(4)SQ(2) + SQ(21)SQ(7) + SQ(21)SQ(5)SQ(2) 

          + SQ(19)SQ(6)SQ(3), 

A4  =  SQ(23)SQ(2) + SQ(21)SQ(4) + SQ(19)SQ(6), 

A5 =  SQ(17) + SQ(15)SQ(2) + SQ(13)SQ(4) + SQ(12)SQ(5), 
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A6 =  SQ(19)SQ(4) + SQ(16)SQ(7) + SQ(15)SQ(7)SQ(1), 

A7 =  SQ(24) + SQ(21)SQ(3) + SQ(18)SQ(4)SQ(2) + SQ(16)SQ(8)  

         + SQ(16)SQ(6)SQ(2) + SQ(15)SQ(7)SQ(2), 

A8  = SQ(1), 

A9  = SQ(13), 

A10 =  SQ(15) + SQ(8)SQ(7) + SQ(8)SQ(4)SQ(2)SQ(1), 

A11 = SQ(8)SQ(8) + SQ(8)SQ(4)SQ(4) + SQ(16). 

 

SQ(64): 

SQ(64) = B10,0  + B2 1,1 + B3 0,2 + B4 2,2 + B5 3,3 + B6 1,3 +  B7 0,3  

                + B8 4,4 + B9 2,4 + B10 1,4 + B11 0,4 + B12 5,5 + B13 3,5  

                + B14 2,5 + B15 1,5 + B16 0,5, where 

 B1 = SQ(63) + SQ(61)SQ(2) + SQ(60)SQ(3) + SQ(59)SQ(4) + SQ(56)SQ(7)  

          + SQ(55)SQ(8) + SQ(53)SQ(7)SQ(3) + SQ(51)SQ(10)SQ(2) + SQ(49)SQ(11)SQ(3) 

          + SQ(48)SQ(13)SQ(2) + SQ(48)SQ(12)SQ(3) + SQ(48)SQ(11)SQ(4)  

         + SQ(47)SQ(16)  + SQ(47)SQ(14)SQ(2) + SQ(47)SQ(12)SQ(4)  

         + SQ(47)SQ(11)SQ(5) + SQ(47)SQ(10)SQ(4)SQ(2) + SQ(45)SQ(18)  

         + SQ(45)SQ(14)SQ(4) + SQ(45)SQ(13)SQ(5) + SQ(45)SQ(11)SQ(5)SQ(2) 

         + SQ(44)SQ(17)SQ(2) + SQ(44)SQ(15)SQ(4) + SQ(44)SQ(14)SQ(5)  

         + SQ(44)SQ(13)SQ(4)SQ(2)  + SQ(44)SQ(12)SQ(5)SQ(2) + SQ(43)SQ(20) 

         + SQ(43)SQ(13)SQ(5)SQ(2)  + SQ(43)SQ(12)SQ(6)SQ(2) + SQ(42)SQ(17)SQ(4) 

         + SQ(42)SQ(16)SQ(5)  +  SQ(42)SQ(15)SQ(6) + SQ(42)SQ(14)SQ(7) 

         + SQ(42)SQ(13)SQ(6)SQ(2)  + SQ(41)SQ(18)SQ(4) + SQ(41)SQ(17)SQ(5) 

         + SQ(41)SQ(14)SQ(6)SQ(2) + SQ(40)SQ(17)SQ(4)SQ(2)  

         + SQ(40)SQ(16)SQ(5)SQ(2) + SQ(40)SQ(15)SQ(6)SQ(2) 

         + SQ(40)SQ(14)SQ(6)SQ(3) + SQ(39)SQ(19)SQ(5)  + SQ(39)SQ(18)SQ(6) 

         + SQ(39)SQ(17)SQ(7) + SQ(39)SQ(15)SQ(6)SQ(3) + SQ(39)SQ(14)SQ(7)SQ(3)  
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         + SQ(38)SQ(17)SQ(8) + SQ(38)SQ(17)SQ(6)SQ(2)  + SQ(38)SQ(15)SQ(7)SQ(3) 

         + SQ(37)SQ(18)SQ(6)SQ(2) + SQ(37)SQ(16)SQ(7)SQ(3) 

         + SQ(36)SQ(17)SQ(8)SQ(2) + SQ(36)SQ(16)SQ(8)SQ(3)  

         + SQ(35)SQ(17)SQ(8)SQ(3) + SQ(34)SQ(17)SQ(8)SQ(4), 

 

B2 = SQ(61) + SQ(59)SQ(2) + SQ(57)SQ(4) + SQ(57)SQ(3)SQ(1) + SQ(56)SQ(5)  

         + SQ(55)SQ(6) + SQ(55)SQ(4)SQ(2) + SQ(54)SQ(6)SQ(1) + SQ(53)SQ(7)SQ(1) 

         + SQ(53)SQ(6)SQ(2) + SQ(52)SQ(9) + SQ(52)SQ(8)SQ(1) + SQ(51)SQ(10) 

         + SQ(51)SQ(9)SQ(1) + SQ(51)SQ(8)SQ(2) + SQ(51)SQ(6)SQ(3)SQ(1)  

         + SQ(49)SQ(11)SQ(1) + SQ(49)SQ(9)SQ(2)SQ(1) + SQ(48)SQ(12)SQ(1) 

         + SQ(48)SQ(11)SQ(2) + SQ(47)SQ(12)SQ(2) + SQ(47)SQ(11)SQ(2)SQ(1)  

         + SQ(47)SQ(10)SQ(3)SQ(1) + SQ(45)SQ(15)SQ(1) + SQ(45)SQ(13)SQ(2)SQ(1) 

         + SQ(45)SQ(11)SQ(5) + SQ(44)SQ(15)SQ(2) + SQ(44)SQ(13)SQ(3)SQ(1)  

         + SQ(44)SQ(11)SQ(4)SQ(2) + SQ(43)SQ(15)SQ(3) + SQ(43)SQ(15)SQ(2)SQ(1) 

         + SQ(43)SQ(14)SQ(4) + SQ(43)SQ(12)SQ(6) + SQ(43)SQ(12)SQ(4)SQ(2) 

         + SQ(43)SQ(10)SQ(5)SQ(2)SQ(1) + SQ(41)SQ(20) + SQ(41)SQ(18)SQ(2)  

         + SQ(41)SQ(17)SQ(2)SQ(1) + SQ(41)SQ(16)SQ(4) + SQ(41)SQ(14)SQ(6) 

         + SQ(41)SQ(12)SQ(6)SQ(2) + SQ(41)SQ(12)SQ(5)SQ(2)SQ(1) 

        + SQ(40)SQ(20)SQ(1) + SQ(40)SQ(16)SQ(5) + SQ(40)SQ(15)SQ(6) 

        + SQ(40)SQ(15)SQ(4)SQ(2) + SQ(39)SQ(15)SQ(7) 

        + SQ(39)SQ(12)SQ(6)SQ(3)SQ(1)  + SQ(38)SQ(18)SQ(5) + SQ(37)SQ(18)SQ(6)  

        + SQ(37)SQ(18)SQ(4)SQ(2)  + SQ(37)SQ(17)SQ(7) + SQ(37)SQ(17)SQ(6)SQ(1) 

        + SQ(37)SQ(16)SQ(6)SQ(2)  + SQ(37)SQ(15)SQ(7)SQ(2)  

        + SQ(36)SQ(18)SQ(4)SQ(2)SQ(1) + SQ(36)SQ(17)SQ(7)SQ(1)  

        + SQ(36)SQ(17)SQ(5)SQ(2)SQ(1) + SQ(35)SQ(17)SQ(8)SQ(1) 

         + SQ(35)SQ(17)SQ(7)SQ(2)  + SQ(35)SQ(16)SQ(6)SQ(3)SQ(1), 

 B3 = SQ(51)SQ(6)SQ(3) + SQ(47)SQ(13) + SQ(47)SQ(11)SQ(2)  
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          + SQ(46)SQ(8)SQ(4)SQ(2) + SQ(45)SQ(15) + SQ(45)SQ(12)SQ(3)  

          + SQ(45)SQ(10)SQ(5) + SQ(45)SQ(9)SQ(4)SQ(2) + SQ(44)SQ(13)SQ(3)  

          + SQ(44)SQ(11)SQ(5) + SQ(43)SQ(15)SQ(2) + SQ(43)SQ(14)SQ(3)  

          + SQ(43)SQ(12)SQ(5) + SQ(43)SQ(10)SQ(5)SQ(2) + SQ(42)SQ(18)  

          + SQ(42)SQ(16)SQ(2) + SQ(42)SQ(14)SQ(4) + SQ(41)SQ(17)SQ(2) 

        + SQ(41)SQ(16)SQ(3) + SQ(40)SQ(17)SQ(3) + SQ(39)SQ(19)SQ(2)  

        + SQ(39)SQ(18)SQ(3) + SQ(39)SQ(17)SQ(4) + SQ(39)SQ(17)SQ(3)SQ(1) 

        + SQ(39)SQ(16)SQ(5) + SQ(39)SQ(15)SQ(6) + SQ(39)SQ(15)SQ(5)SQ(1) 

        + SQ(39)SQ(12)SQ(6)SQ(3) + SQ(38)SQ(16)SQ(4)SQ(2) + SQ(37)SQ(17)SQ(6) 

        + SQ(37)SQ(17)SQ(4)SQ(2) + SQ(37)SQ(16)SQ(7) + SQ(37)SQ(14)SQ(6)SQ(3)  

        + SQ(36)SQ(15)SQ(6)SQ(3) + SQ(35)SQ(15)SQ(7)SQ(3), 

 B4 = SQ(57) + SQ(55)SQ(2) + SQ(52)SQ(5) + SQ(51)SQ(6) + SQ(49)SQ(8)  

         + SQ(49)SQ(7)SQ(1) + SQ(49)SQ(6)SQ(2) + SQ(48)SQ(9) + SQ(48)SQ(7)SQ(2) 

         + SQ(45)SQ(9)SQ(3) + SQ(43)SQ(14) + SQ(43)SQ(12)SQ(2) + SQ(43)SQ(10)SQ(4) 

         + SQ(41)SQ(16) + SQ(41)SQ(12)SQ(4) + SQ(40)SQ(17) + SQ(40)SQ(15)SQ(2) 

         + SQ(40)SQ(13)SQ(4) + SQ(39)SQ(18) + SQ(39)SQ(15)SQ(3)  

         + SQ(39)SQ(14)SQ(4) + SQ(39)SQ(13)SQ(4)SQ(1) + SQ(39)SQ(12)SQ(5)SQ(1) 

         + SQ(39)SQ(11)SQ(5)SQ(2) + SQ(37)SQ(18)SQ(2) + SQ(37)SQ(17)SQ(3)  

         + SQ(37)SQ(16)SQ(4) + SQ(37)SQ(15)SQ(4)SQ(1) + SQ(37)SQ(14)SQ(6) 

         + SQ(37)SQ(13)SQ(6)SQ(1)  + SQ(37)SQ(13)SQ(5)SQ(2) + SQ(36)SQ(15)SQ(6) 

         + SQ(35)SQ(17)SQ(5) + SQ(35)SQ(16)SQ(6) + SQ(35)SQ(14)SQ(7)SQ(1), 

 B5 = SQ(47)SQ(2) + SQ(45)SQ(4) + SQ(40)SQ(9) + SQ(39)SQ(10)  

         + SQ(39)SQ(9)SQ(1) + SQ(39)SQ(8)SQ(2) + SQ(37)SQ(12) + SQ(37)SQ(11)SQ(1)  

         + SQ(37)SQ(10)SQ(2) + SQ(35)SQ(13)SQ(1) + SQ(35)SQ(12)SQ(2) 

         + SQ(35)SQ(11)SQ(3) + SQ(33)SQ(12)SQ(4) + SQ(32)SQ(13)SQ(4)  

         + SQ(31)SQ(15)SQ(3) + SQ(31)SQ(14)SQ(4) + SQ(31)SQ(13)SQ(5), 

B6 = SQ(51)SQ(4) + SQ(49)SQ(6) + SQ(45)SQ(9)SQ(1) + SQ(43)SQ(12)  
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        + SQ(43)SQ(11)SQ(1) + SQ(43)SQ(8)SQ(4) + SQ(41)SQ(14) + SQ(41)SQ(13)SQ(1) 

        + SQ(41)SQ(10)SQ(4) + SQ(39)SQ(15)SQ(1) + SQ(39)SQ(13)SQ(2)SQ(1) 

        + SQ(39)SQ(12)SQ(4) + SQ(37)SQ(18) + SQ(37)SQ(16)SQ(2) 

        + SQ(37)SQ(15)SQ(2)SQ(1) + SQ(37)SQ(14)SQ(4) + SQ(37)SQ(13)SQ(5)  

        + SQ(37)SQ(12)SQ(6) + SQ(36)SQ(15)SQ(4) + SQ(35)SQ(17)SQ(3)  

        + SQ(35)SQ(17)SQ(2)SQ(1) + SQ(35)SQ(15)SQ(5) + SQ(32)SQ(15)SQ(7)SQ(1), 

B7 = SQ(53)SQ(3) + SQ(47)SQ(9) + SQ(47)SQ(8)SQ(1) + SQ(44)SQ(8)SQ(4)  

        + SQ(42)SQ(8)SQ(4)SQ(2) + SQ(41)SQ(9)SQ(4)SQ(2) + SQ(40)SQ(13)SQ(3) 

        + SQ(39)SQ(17) + SQ(39)SQ(14)SQ(3) + SQ(39)SQ(12)SQ(5) 

        + SQ(39)SQ(11)SQ(4)SQ(2) + SQ(37)SQ(17)SQ(2)  

        + SQ(37)SQ(15)SQ(4) + SQ(37)SQ(13)SQ(6) + SQ(35)SQ(16)SQ(5) 

        + SQ(35)SQ(15)SQ(6) + SQ(35)SQ(14)SQ(5)SQ(2) + SQ(35)SQ(12)SQ(6)SQ(3)  

        + SQ(33)SQ(16)SQ(7) + SQ(33)SQ(14)SQ(6)SQ(3) + SQ(32)SQ(15)SQ(7)SQ(2), 

 B8 =  SQ(33) + SQ(31)SQ(2) + SQ(29)SQ(4) + SQ(25)SQ(8) + SQ(24)SQ(9), 

 B9 = SQ(43)SQ(2) + SQ(37)SQ(8) + SQ(35)SQ(10) + SQ(32)SQ(13) 

          + SQ(29)SQ(14)SQ(2), 

B10 = SQ(41)SQ(6) + SQ(40)SQ(7) + SQ(39)SQ(8) + SQ(35)SQ(11)SQ(1)  

          + SQ(35)SQ(8)SQ(4) + SQ(33)SQ(13)SQ(1) + SQ(32)SQ(15) + SQ(32)SQ(11)SQ(4) 

          + SQ(31)SQ(15)SQ(1) + SQ(31)SQ(11)SQ(5) + SQ(29)SQ(14)SQ(4)  

          + SQ(29)SQ(13)SQ(5), 

 B11 = SQ(48) + SQ(41)SQ(7) + SQ(41)SQ(5)SQ(2) + SQ(39)SQ(9)  

          + SQ(39)SQ(7)SQ(2)  + SQ(39)SQ(6)SQ(3) + SQ(38)SQ(8)SQ(2) 

          + SQ(38)SQ(7)SQ(3) + SQ(37)SQ(9)SQ(2) + SQ(36)SQ(9)SQ(3) 

          + SQ(36)SQ(8)SQ(4) + SQ(35)SQ(9)SQ(4) + SQ(34)SQ(8)SQ(4)SQ(2)  

          + SQ(32)SQ(16) + SQ(32)SQ(14)SQ(2) + SQ(32)SQ(13)SQ(3)  

          + SQ(32)SQ(12)SQ(4) + SQ(32)SQ(11)SQ(5) + SQ(32)SQ(10)SQ(4)SQ(2) 

          + SQ(31)SQ(15)SQ(2) + SQ(31)SQ(11)SQ(4)SQ(2) + SQ(29)SQ(14)SQ(5), 
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B12 = SQ(1), 

B13 = SQ(25), 

B14 = SQ(29) + SQ(25)SQ(4) + SQ(24)SQ(5) + SQ(23)SQ(6) + SQ(21)SQ(8), 

B15 = SQ(31) + SQ(29)SQ(2) + SQ(28)SQ(3) + SQ(27)SQ(4) + SQ(25)SQ(4)SQ(2)  

          + SQ(24)SQ(7) + SQ(24)SQ(5)SQ(2) + SQ(23)SQ(8) + SQ(23)SQ(6)SQ(2)  

        + SQ(22)SQ(6)SQ(3) + SQ(21)SQ(8)SQ(2) + SQ(21)SQ(7)SQ(3) + SQ(20)SQ(8)SQ(3) 

        + SQ(19)SQ(8)SQ(4) + SQ(16)SQ(8)SQ(4)SQ(2)SQ(1), 

B16 = SQ(32) + SQ(31)SQ(1) + SQ(30)SQ(2) + SQ(29)SQ(2)SQ(1) + SQ(28)SQ(4)  

          + SQ(28)SQ(3)SQ(1) + SQ(27)SQ(4)SQ(1) + SQ(26)SQ(4)SQ(2)  

          + SQ(25)SQ(4)SQ(2)SQ(1) + SQ(24)SQ(8) + SQ(24)SQ(7)SQ(1) 

          + SQ(24)SQ(6)SQ(2) + SQ(24)SQ(5)SQ(2)SQ(1) + SQ(23)SQ(8)SQ(1)  

          + SQ(23)SQ(6)SQ(2)SQ(1) + SQ(22)SQ(8)SQ(2) + SQ(22)SQ(7)SQ(3) 

          + SQ(22)SQ(6)SQ(3)SQ(1) + SQ(21)SQ(8)SQ(2)SQ(1) + SQ(21)SQ(7)SQ(3)SQ(1) 

          + SQ(20)SQ(8)SQ(4) + SQ(20)SQ(8)SQ(3)SQ(1) + SQ(19)SQ(8)SQ(4)SQ(1)  

          + SQ(18)SQ(8)SQ(4)SQ(2). 

2.  Comments 

There are many applications and uses for the decomposition.  The evaluation of these 

operations on the appropriate classes of the infinite complex or quaternionic projective spaces 

are as follows: 

   
1 12 2 2

0, 1( )
s s s

s  
+ + +

+ =  ,  
1 1 1 12 ( 1)2 2 2 2

0, 1 0, 1( ) ( )
s s s s sh h h

s sh h     
+ + + +− +

+ += = ,   s ≥ 1, 

where 2

2( ( ); )H P   is the generator. 

  
1 12 2 2

0, 2 ( )
s s s

s u u
+ + +

+ =  ,  
1 1 1 12 ( 1)2 2 2 2

0, 2 0, 2( ) ( )
s s s s sh h h

s su hu u hu 
+ + + +− +

+ += = ,   s ≥ 0, 

where 4

2( ( ); )u H QP   is the generator. 

With this information, one can show that the secondary obstruction to immersing the 

quaternionic projective space ( )QP n  for n even and a power of 2 in 
8 4n−

 is non zero and 

hence ( )QP n  does not immerse in 
8 4n−

.   We shall give a proof of this statement in the next 

section. 
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The decomposition of (16)SQ  had been used by James Lin and Frank Williams ([6], [7] and 

[8]) in the investigation of 6-connected finite H spaces with 2 torsion, namely that there is no 

finite H-space X with 2 7
2 11 134

7

[ ]
*( ; ) ( , )

x
H X x x

x
=    and the decomposition of SQ(32) 

had been used by them to prove that there is no mod 2 H-space X with  

2 15
2 23 27 294

15

[ ]
*( ; ) ( , , )

x
H X x x x

x
=  .   A variation of the decomposition of SQ(16), which 

can be verified by evaluation of the relation of 
4u , where  4

2( ( ); )u H QP  , had been used 

by them on their work on 6-connected finite H-spaces.   Another form of the decomposition 

of SQ(16), which can be verified on 6 24

2( ( ); )u H QP   or 12 24

2( ( ); )H P   is used 

by Daciberg Lima Goncalves [4] in his work on mod 2 homotopy associative H-spaces.   

Indeed, based on the formula for 
1 12 2 2

0, 1( )
s s s

s  
+ + +

+ = any specific decomposition of 

1(2 )sSQ +  by the Adams operations can be verified.   The problem is to obtain the coefficients 

of the relations. 

3. Non-Immersion of ( )QP m , 2 , 1sm s=   in 
8 4m−

.   

We now prove our assertion on the non-immersion result for the 4m dimensional quaternionic 

projective space ( )QP m , 2 , 1sm s=  . 

Suppose m is an even integer and is a power of 2.  Then the quaternionic projective space 

QP(m) immerses in 
8 3m−

. (See for example Davis and Mahowald [3].)  

We can deduce this by taking a 4m-MPT for the fibration : (4 3) ( )p BSpin m BSpin− →   and 

by using the method of Ng [12] with a generating class theorem for the k-invariants to deduce 

that the relevant top dimensional obstructions are realized as stable secondary and tertiary 

cohomology operations and that the normal bundle  of QP(m) has no obstruction below the 

top dimension by connectivity condition and no obstruction in the top dimension since any 

cohomological operation into the top cohomology group of the Thom space of the normal 

bundle is zero as the top class is spherical.  Therefore, QP(m) of 4m real dimension immerses 

in 
8 3m−

. It actually embeds in  
8 3m−

 according to James [10].    

Take an embedding of QP(m) in 8m .  Let   be the normal bundle of this embedding.   Since 

QP(m) is 3-connected, the normal bundle is a 4m dimensional spin bundle. The normal 

bundle  is classified by a map : ( ) (4 )f QP m BSpin m→ , where (4 )BSpin m  is the classifying 

space for 4m dimensional spin bundles and its stable normal bundle is classified by inclusion 

of (4 )BSpin m in ( )BSpin  .   Therefore, we start with the classifying space for spin bundles 

and consider the fibration, : (4 4) ( )p BSpin m BSpin− →  .  The normal bundle  is classified 

by a map : ( ) (4 )f QP m BSpin m→  and the stable normal bundle is classified by inclusion of  

(4 )BSpin m in ( )BSpin  .  QP(m) immerses in 8 4m−  if, and only if, the classifying map 

: ( ) (4 ) ( )f QP m BSpin m BSpin→ →   of the stable normal bundle  lifts to (4 4)BSpin m− .  
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If this classifying map lifts to (4 4)BSpin m−  we say the bundle  has stable geometric 

dimension less than or equal to 4m−4.    We can just stabilise the normal bundle of the 

embedding in 
8m

 by just adding one trivial line bundle.  We shall show that the obstruction 

to lifting is non-trivial and consequently, QP(m) does not immerse in 
8 4m−

. 

We take the 4-stage 4m-MPT (modified Postnikov tower) for : (4 4) ( )p BSpin m BSpin− →  . 

We list the k-invariants for the various stages in the following table.      

4m-MPT for the fibration : (4 4) ( )p BSpin m BSpin− →       

 k-invariant Dimension Defining relation 

Stage 1 1

1 4 4

1

2 4 2

1

3 4

m

m

m

k w

k w

k w

 −

−

=

=

=

  

4 3

4 2

4

m

m

m

−

−   

 

Stage 2 2

1

2

2

2

3

2

4

k

k

k

k

 

4 2

4 1

4

4

m

m

m

m

−

−
 

2 1

1

2 1

2

4 1 2 1 1

4 1 2

2 1 1 1 1

2 3

0

0

( ) 0

0

Sq k

Sq k

Sq w k Sq Sq k

Sq Sq k Sq k

=

=

+  + =

+ =

 

Stage 3 3

1

3

2

3

3

k

k

k

 

4 1

4

4

m

m

m

−

 

2 2

1

2 1 2 1 2

1 3

2 2 1 2

2 4

0

0

0

Sq k

Sq Sq k Sq k

Sq k Sq k

=

+ =

+ =

 

Stage 4 4k   4m   2 3 1 3

1 2 0Sq k Sq k+ =  

  

We shall show that 2

3 ( )k   is non-zero and consequently the classifying map p cannot lift pass 

stage 2 of the m-MPT for p and so it cannot lift to BSpin(4m−4). 

Plainly for QP(m), 4 4 4 2( ) 0, ( ) 0m mw w  − −= = .  Now 4 ( ) 0mw  = .(See Massey [11]). 

Let  be the stable secondary cohomology operation of Hughes-Thomas type with the 

defining relation: 

                                     4 4 4 4 1 2 2 1 4 2( ) ( ) 0m m mSq Sq Sq Sq Sq Sq Sq − − −+ + = .  

Note that on the fundamental class 4 4mb −  of the principal bundle 4 4 2( ,4 4)mY K m− → − ,  

with classifying map 4 4 2 4 2( , , )m mSq Sq Sq − − , where 2( ,4 4)K m−  is the Eilenberg Maclane 

space, we have that  4

4 4 4 4 4 4( )m m nb Sq b b− − −  .    1 1 1

1 2 3( , , )k k k  is admissible for 2

3k  in the 

sense of the Admissible Class Theorem of Ng [12].  In particular we have 

          2

3 4 4 4( ( )) ( ( ) ( ) ( ) ( ( ( )))mU T k w w U T v   − +    modulo zero indeterminacy, 
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where ( )T   is the Thom space of the normal bundle and ( ( ))U T  the Thom class of the 

normal bundle.  Observe that the indeterminacy of  on the Thom class ( ( ))U T   is zero. 

At this point, we assert that ( ( ( ))) 0U T v = modulo zero indeterminacy.  It is now folk lore 

that the top cohomology class or homology class of the normal bundle of an embedding is 

spherical and so any cohomology operation into the top cohomology group of the Thom 

space of  is trivial.  As an exercise of not using this fact we can proceed to examine the 

operation  . 

We shall change the operation  to the stable secondary cohomology operation    defined by 

the relation 

                             4 4 4 1 4 2 2 2 4 1( ) ( ) 0m m mSq Sq Sq Sq Sq Sq Sq − − −+ + = . 

We can choose  such that   .   Moreover, ( ( ( ))) ( ( ( )))U T v U T v =  modulo zero 

indeterminacy.  Plainly, ( ( ( ))) ( ( ( )))U T v U T v = , where  is associated with the relation 

                        4 4 3 1 4 2 2 2 4 1( ) ( ) 0m m mSq Sq Sq Sq Sq Sq Sq− − −+ + = . 

We are going to use an S dual operation and so we introduce an operation,  , associated with 

the relation,  1 4 3( ) 0mSq Sq − = . Plainly, ( ( ( ))) 0U T v = .   Let  3Sq  = + .  Then   is 

associated with the relation, 

                        4 4 3 1 4 2 2 2 4 1( ) ( ) 0m m mSq Sq Sq Sq Sq Sq Sq − − −+ + =  

and ( ( ( ))) ( ( ( )))U T v U T v =   modulo zero indeterminacy. 

According to Atiyah [1], 4 4 1

, 1( )c m

c mT Q− −

+   , where c is a multiple of the quaternionic 

James number 1mc +  and , 1c mQ +  is the stunted quasi-projective space of James [10], where the 

first nonzero cohomology class c m −  is  of dimension 4( ) 1c m− −  and so   will take this 

class to a class in dimension 4c−1.  Also, by Atiyah [1], , 1c mQ +  is S-dual to the S type of the 

stunted quaternionic projective space, 1 , 1m c mQP + − + .    Hence, we may take the S dual to be  

1 1, 1mc m mQP
+ + + + . Now, if 2sm =  and s ≥ 1, then the 2 exponent of 1mc + is given by   

                  1

2 1 2 22 1 1 2
( ) ( ) max 2(2 1) 1,2 ( ) 2s

s

s s

m
j

c c j j s   +

+ +  
= = + − + = + . (See [13]). 

Hence, we may write
1 12 2 1

1 2 2
s ss s

mc g
+ ++ + +

+ = +  for some positive integer g.    Note that 

1

1

1

1

1, 1
m

m

m

c m

c m m

c

QP
QP

QP

+

+

+

+ +

+ + + = , where
1 1 1( )

mc m mQP QP c m
+ + + += +  and 

1 1( 1)
mc mQP QP c
+ += − . The first 

non-zero cohomology class in 1

1

1

1* *

1, 1 2 2( ; ) ;m

m

m

c m

c m m

c

QP
H QP H

QP

+

+

+

+ +

+ + +

 
=  

 
 

 is in dimension
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14 mc +  and is given by
1 1 1 12 2 1 2 1 2

1 2 2 2(2 2 )
s s s ss s s s

mc g gu u u
+ + + ++ + + + − +

+ + += = .    Therefore, ( ( ( ))) 0U T v =  if, 

and only if, 
1 12 1 22(2 2 )( ) 0

s ss sgu
+ ++ − ++ = , where   is the dual operation to   associated with 

the dual relation, 

                   4 3 4 4 2 2 1 4 1 2: ( ) ( ) 0m m mSq Sq Sq Sq Sq Sq Sq   − − − + + = . 

Observe that 4 1 3 4 4 4 4 3 4 4 2 1( ) ( ) ( ) ( )m m m mSq Sq Sq Sq Sq Sq Sq Sq    − − − −= = = ,

4 3 1 4 4 4 4 1( )m m mSq Sq Sq Sq Sq  − − −= =  and since 4 4 4 4 2 2m mSq Sq Sq Sq − −= ,

( )4 2 2 4 4 4m mSq Sq Sq Sq − −= .    Therefore, the defining relation is in the form

( ) ( ) ( )4 4 1 4 4 4 4 1 4 4 2 1 2: ( ) ( ) 0m m mSq Sq Sq Sq Sq Sq Sq Sq Sq Sq   − − − + + =  and we can choose 

a representative for the operation   to be 4 4

0,2

mSq −  , where 0,2  is the Adams operation of 

degree 4.  Hence, 
1 1 1 12 1 2 2 1 22(2 2 ) 4 4 2(2 2 )

0,2( ) ( )
s s s ss s s sg m gu Sq u  
+ + + ++ − + + − ++ − + = modulo zero 

indeterminacy. 

But 
1 1 1 12 1 2 1 1 2 1 22(2 2 ) 2 1 2 2(2 2 1) 2

0,2 0,2( ) (2 2 ) ( ) 0
s s s ss s s s s sg s s gu g u u 
+ + + ++ − + + + + − ++ + − + + −= + = . It follows that 

2

3 4 4 4( ( ( ))) ( ( )) ( ( ) ( ) ( )) 0mU T v U T k w w   − =  +  =  modulo zero indeterminacy.   This 

means 2

3 4 4 4( ) ( ) ( ) 0mk w w  −+  =  .   The Stiefel-Whitney class of the normal bundle of 

(2 )sQP  is given by   
4

2
( )

s

i i

i

m i i
w u u

i i


+  + 
= =   
   

 , where 4

2( ( ); )u H QP m  is the 

generator. Therefore, 4 ( )w u =  and 
1

4 4 4(2 1)
( ) ( )s

m

mw w u  −

− −
= = .   Hence, 2

3 ( ) 0mk u =  . 
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