
2005/2006   Semester 2                  MA1102R Calculus            Partial Solution to Tutorial 4 

See General Advice for Tutorial 4 in the course website:
http://www.math.nus.edu.sg/~matngtb/Calculus/tutorials.html
For a deeper appreciation check out 
http://www.math.nus.edu.sg/~matngtb/Calculus/Extreme%20Value/bound.htm
Students are expected to master the skill of evaluation of limits. For some parts that are
straightforward, only answers are given for the purpose of checking.  For questions that most
students have difficulty (such as 1(b), 2(c) etc) or when there are some specific points to take
note (such as 1(c), 1(d) , 3 etc),  solutions with explanation are provided. Do try to compare with
your work and make sure you really understand the working and reasoning. When a solution is
not given, it is similar to examples in lecture or textbook. You should find this out. You should
know the definition of continuity at a point, and be able to determine whether  a function is
continuous at a point.  Properties of continuity such as addition or product or composite of
continuous functions give a continuous function. You should understand the statement of The
Intermediate Value Theorem and know how to apply it.  As before, the solution given here
serves as a guide. For those of you who have difficulty in presenting solution, use this solution
as a guide in learning how to present your work. For those who have difficulty in working out
the problem, use it to clarify your understanding of the subject. Lastly, use the solution wisely,
and not blindly.  

1     a.   xd∞
lim 3 8x2+7

27x2−1 = 2
3 .

       b.   xd−∞lim x2+9
1+4x =xd−∞lim −

x2+9 / x2

(1+4x)/ x2 =xd−∞lim −
x2+9 / x2

(1+4x)/(−x) =xd−∞lim
1+ 9

x2

1− 4
x

= − 1
4 .

(Note that for x < 0,  .)x2 = x = −x

Alternatively, for x < −1/4 , note that 1+ 4x < 0 so that 1+ 4x =  − (1 + 4x)2

 = = ... =  .xd−∞lim x2+9
1+4x =xd−∞lim − x2+9

(1+4x)2 − xd−∞lim x2+9
(1+4x)2 − 1

4

      c.     since  and     use 
xd(−6)−
lim 3x

36−x2 =
xd(−6)−
lim 3x

6−x $
1

6+x = +∞
xd(−6)−
lim 1

6+x = −∞
xd(−6)−
lim 3x

6−x = −3
2 < 0,

Theorem 4 part 2 of this tutorial set.

      d.     
xd4+
lim x−4

8x−x2 −4
=

xd4+
lim (x−4)( 8x−x2 +4)

( 8x−x2 −4)( 8x−x2 +4)
=

xd4+
lim (x−4)( 8x−x2 +4)

8x−x2−16 =
xd4+
lim 8x−x2 +4

4−x = −∞

           since  ., by  Theorem 4 (part 1), Tut set 4 .
xd4+
lim 1

4−x = −∞ and
xd4+
lim ( 8x − x2 + 4) = 8 > 0

2.   a.   xd∞
lim 23x2−5x3+7

13x3+3 = − 5
13 .

      b.   xd−∞lim x3

4x2−2 − x2

4x+3 =xd−∞lim 3x3+2x2

(4x2−2)(4x+3) = ... = 3
16

      c.    (Here, for x < 0, we have 3-x>0 so that xd−∞lim 9x2−2
3−x =xd−∞lim 9x2−2

(3−x)2 =xd−∞lim
9− 2

x2
9

x2 − 6
x +1

= 3.

(3-x) .) (3 − x)2 =

      d.   . xd∞
lim x2 + 2500 − x =xd∞

lim ( x2+2500 −x)( x2+2500 +x)

x2+2500 +x
=xd∞

lim 2500
x2+2500 +x

= 0

(since  , and use Useful results (1) on page 2 of Tutorial set 4.)xd∞lim x2 + 2500 + x = ∞

3.   a.   We can write .  f (x) = 5x
x−3 = 5 + 15

x−3
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To find horizontal asymptote, find the following limits at infinity: .  
xd!∞
lim f (x) = 5

Thus y = 5 is the only horizontal asymptote.
To find vertical asymptotes, note that  
             and .  

xd3+
lim f (x) =

xd3+
lim (5 + 15

x−3 ) = +∞
xd3−
lim f (x) =

xd3−
lim (5 + 15

x−3 ) = −∞
Therefore, a vertical asymptote for the graph of  f  is given by the equation x = 3
and a  horizontal asymptote of the graph of  f  is given by the equation y = 5.

                                                  

0 x

y

3

5

       b.   Notice that .  Then  ,f (x) = 1
2x2−x−17 xd!∞

lim f (x) = 0

              ,
xd

137 +1
4

+lim f (x) =
xd

137 +1
4

+lim 1

2(x+
137 −1

4 )
$ 1

(x−
137 +1

4 )
= +∞

              ,
xd

137 +1
4

−lim f (x) =
xd

137 +1
4

−lim 1

2(x+
137 −1

4 )
$ 1

(x−
137 +1

4 )
= −∞

                and
xd

− 137 +1
4

+lim f (x) =
xd

− 137 +1
4

+lim 1

2(x+
137 −1

4 )
$ 1

(x−
137 +1

4 )
= −∞

              .   
xd

− 137 +1
4

−lim f (x) =
xd

− 137 +1
4

−lim 1

2(x+
137 −1

4 )
$ 1

(x−
137 +1

4 )
= +∞

             Therefore, the vertical and horizontal asymptotes are the lines x = ,                        137 +1
4

                    x =  and  y = 0 respectively.  The graph of  f  is shown below.−
137 −1

4
                                           

0 x

y

(√(137)+1)/4  (−√(137)+1)/4  

4.  To check for continuity at x = −1, one must check  if  
xd(−1)
lim f (x) = f (−1).

5    a.  Note that   f  is continuous on R − {1, 3}. (since on each part, the expression is a
polynomial.)
Now   and   and so these

xd1−
lim f (x) =

xd1−
lim (2x2 + 3) = 5

xd1+
lim f (x) =

xd1+
lim (5 − 3x) = 2

two limits are not the same and consequently  f  is not continuous at x = 1.  
Now  and  and so      

xd3−
lim f (x) =

xd3−
lim (5 − 3x) = −4

xd3+
lim f (x) =

xd3+
lim (x − 7) = −4 = f (3)

.  Thus,  f  is continuous at x = 3.  Therefore,  f  is continuous on R
xd3
lim f (x) = f (3)
− {1}.

b.    Observe that  .  Thus                                   g(x) =
⎧ 

⎩ 
⎨ 

x−4
x−4 , x ! 4
2, x = 4

=
⎧ 

⎩ 
⎨ 
⎪ 
⎪ 

1 , x > 4
2, x = 4

−1 , x < 4
.  Therefore, g is not continuous at x = 7.  

xd4−
lim g(x) = −1 ! 1 =

xd4+
lim g(x)

On (−∞, 4), g(x) = −1, which is a constant function, hence g is continuous on (−∞, 4).
On (4, ∞), g(x) = 1, which is a constant function, hence g is continuous on (4, ∞).
Hence, g is continuous on R − {4}.
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6.   a.      .
xd 0
lim sin(7x)

sin(5x) = 7
5

      b.      .
xd0
lim tan4(2x)

4x4 = 4

      c.        .
xd0
lim 1−cos(8x)

sin(8x) =
xd0
lim 1−cos(8x)

8x
8x

sin(8x) =
xd0
lim 1−cos(8x)

8x xd0
lim 8x

sin(8x) = 0 $ 1 = 0

      d.      0
xd0
lim sin(sin(x2))

23x =
                                
      e.       by the Squeeze Theorem since  and                 

xd0
lim x3 cos( 1

x7 ) = 0 − x 3 [ x3 cos( 1
x7 ) [ x 3

               . 
xd0
lim x 3 = 0

              
7.    Since  , we have, by substituting x = 0 , 1 − 4x2 [ g(x) [ cos(2x) for x in (− 2 , 2 )

              and  so g(0) = 1.  1 − 4 $ 02 [ g(0) [ cos(0) = 1
       Also  so that by the Squeeze Theorem,               1 =

xd0
lim (1 − 4x2) =

xd0
lim cos(2x) = 1

xd0
lim g(x) = 1.

Hence   and so g is continuous at x = 0.
xd0
lim g(x) = g(0)

8.   You should give the reason for obtaining the equation involving k.
        and assuming 

xd0+
lim h(x) =

xd0+
lim (7x + 5k2) = 5k2 k ! 0

       .
xd0−
lim h(x) =

xd0−
lim tan(kx)

x =
xd0−
lim sin(kx)

kx
k

cos(kx) = 1 $ k
1 = k

       Therefore, for the limit at x = 0 to exist, we must have  ,  
xd0+

lim h(x)=
xd0−

lim h(x), .i.e.5k2 = k
that is, .  Thus, with this value of  k, we have  k = 1

5
.   Hence h is now continuous at  x = 0.

xd0
lim h(x) = 1

5 which is the same as h(0)

9. a.   Refer to similar examples in lectures or textbook.
Let g(x) = 2x3 + x2 + 2.  Then g(-2) < 0 and g(-1) = 1 > 0.  Note that g is continuous on the  
closed and bounded interval [−2,−1].  Then apply the Intermediate Value Theorem.

   b.   Let .  Then g is continuous on .  Now g (0) = −1 < 0  and            g(x) = x − 2sin(x) − 1 [0, 3
2 ]

 .  Therefore, by the Intermediate Value Theorem,g( 3
2 ) = 3

2 − 2 sin( 3
2 ) − 1 = 1 + 3

2 > 0
there is a c in  such that g (c) = 0.  Hence c − 2sin(c) = 1.(0, 3

2 )

10.   Observe that for x in [0, 2] we have .  Thus, we have that0 [ f (x) [ 2
        .  Define a function  by g(x) =  f (x) − x.                            0 [ f (0) and f (2) [ 2 g : [0, 2] dR

 Then g is continuous since  f  is continuous on [0, 2].   Now  and             g(0) = f (0) − 0 m 0
   and so by the Intermediate Value Theorem there exists a c in                  g(2) = f (2) − 2 [ 0
 [0, 2] such that g (c) = 0, that is,  f (c) = c.

11.  (Optional)  False.  There are plenty of counter examples. For instance, take  .g(x) = x2(x − 1)
Then  g (−1)  < 0 and g (2) > 0.  But there are exactly two zeros in [−1, 2]. 

12.  (Optional. )Discussion after Activity 8 should give some idea of the equivalent definition
of continuity:

        f   is continuous at x = a if and only if for any sequence {xn } that converges to a we have
that the sequence { f (xn) } converges to f (a).   That is to say if   , then nd∞lim xn = a

.  We only need the one way implication. This is how the proof goes.nd∞lim f (xn) = f (a)
Suppose  f  is continuous at x = a.   That means given any ε > 0, there is a δ > 0 such that |x
− a| < δ ⇒ | f (x) − f (a) | < ε.  We shall make use of this implication.  Now suppose {xn }
converges to x = a.  That means taking the same δ > 0 above, there is an integer Nδ such
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that for all n > Nδ we have |xn − a| < δ.   Consequently by the above implication | f (xn) − f
(a) | < ε.  This  means { f (xn) } converges to f (a).

       Now for the opposite implication.  This is equivalent to: if f is not continuous at x = a, then
there exists a sequence {xn } that converges to a but { f (xn) } does not converge to f (a).

       Now f is not continuous at x = a means we can find a ε > 0 such that for any δ > 0, we can
find a xδ  such that |xδ − a| < δ but | f (xδ) − f (a) | ≥ ε.  Thus taking δ = 1/n for n a natural
number, and let xn = xδ we have a sequence {xn } that converges to a.    This is seen as
follows for any η > 0, there exists an integer Nη such that 1/Nη < η.  Thus  for all n > Nη  

       |xn − a| < 1/n < 1/Nη < η.   Therefore, {xn } converges to a.  But we have for any natural
number  n, | f (xn) − f (a) | ≥ ε.  Hence { f (xn) } does not converge to f (a).   Now we apply
this result to our question.

       Suppose  f (x) = 0 for all rational number x.   To prove that the function is zero is to prove
that f (x) = 0 for irrational number.  Let  a be an irrational number.  Then by the density of
the rational numbers, for each natural number  n there exists a rational number an such that
|an − a| < 1/n  (i.e.,  an ∈ (a−1/n, a+1/n).   The density theorem states that between any two
numbers, there exists a rational number.  Thus between a−1/n and a+1/n there is a rational
number an .)  Then obviously the sequence {an } converges to a.   Therefore, { f (an) }  
converges to f (a).  But  f (an) = 0 for all natural number n, and so { f (an) }  converges to 0.
Therefore, by the uniqueness of limit, f (a) = 0.   Hence f (x) = 0 for all x.

13.   (Optional. ) Recall  f (x + y) = f (x) + f (y) for any x and y.   Thus for any natural number n
> 1,   f ( n) =  f ( 1 +1+ … +1) =  f (1) + f (1) + …+ f (1) = n f (1).

        Also we have that   f (1) = f (n ⋅ 1/n) = f ( 1/n +1/n+ … +1/n)
                                              =  f (1/n) + f (1/n) + …+ f (1/n) = n f (1/n).
         Thus  f (1/n) =  f (1)⋅ 1/n  ---------------------   (1)  
         Now note that   f (0) =  f (0 + 0) = f (0) + f (0) = 2 f (0)  and so

 f (0) =  0 ---------------  (2)
         We then have 0 = f (0) = f (1/n + (−1/n)) = f (1/n) + f (−1/n) implying that                             

            f (−1/n) = − f (1/n) = − f (1)⋅ 1/n=  f (1) (−1/n)  ----------------  (3)
        Now for any rational number q,  q is of the form m/n with  n > 0.    Supose m > 0,
         f (m/n) = f (m ⋅ 1/n) = f ( 1/n +1/n+ … +1/n) = f (1/n) + f (1/n) + …+ f (1/n) (m times)
         = m f (1/n) = m f (1)⋅ 1/n = f (1)⋅ (m/n)  by (1)
         Suppose m < 0,   f (m/n) = f (−m ⋅ (−1/n)) = f ( (−1/n) + (−1/n) + … + (−1/n))
          = f (−1/n) + f (−1/n) + …+ f (−1/n)     ( −m times )
          = (−m) f (−1/n) = (−m) f (1)⋅ (−1/n) = f (1)⋅ (m/n) by (3).
        Since f (0) = 0 , we have thus proved that  f (m/n) = f (1) ⋅ (m/n) = k ⋅ (m/n), where k = f (1).
        This means for any rational number x,  f (x) = k x.   This proves part (1)
        Part (2).   Suppose  f is continuous on R.   Then the function  g(x) =  f (x) − k x  is

continuous on R.   By part (1), g(x) = 0 for all rational number x.  Therefore, by Question
12,  g(x) = 0 for all x.   Hence f (x) = k x for all x.
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