

Factorising quadratics

You will have seen before that expressions like (x+2)(x+3) can be expanded to give the quadratic expression $x^2 + 5x + 6$. Like many processes in mathematics, it is useful to be able to go the other way. That is, starting with the quadratic expression $x^2 + 5x + 6$, can we carry out a process which will result in the form (x+2)(x+3)? This process is called **factorising the quadratic expression**. This leaflet describes this process. Special cases known as **complete squares** and **the difference of two squares** are dealt with on separate leaflets.

Factorising quadratics

To learn how to factorise let us study again the previous example when the brackets were multiplied out from (x+2)(x+3) to give $x^2 + 5x + 6$.

$$(x+2)(x+3) = x^2 + 3x + 2x + 6 = x^2 + 5x + 6$$

Clearly the number 6 in the final answer comes from *multiplying* the numbers 2 and 3 in the brackets. This is an important observation. The term 5x comes from *adding* the terms 3x and 2x.

So, if we were to begin with $x^2 + 5x + 6$ and we were going to reverse the process we need to look for two numbers which add to give 5 and multiply to give 6. What are these numbers? Well, we know that they are 3 and 2, and you will learn with practise to find these simply by inspection. We can set the calculation out as follows. Start with a pair of empty brackets.

$$x^2 + 5x + 6 = ($$
)() insert an x in each $= (x)(x)$ these will multiply to give the required x^2 $= (x + 2)(x + 3)$ these numbers multiply to give 6 and add to give 5

The answer should always be checked by multiplying-out the brackets again!

Example

Factorise the quadratic expression $x^2 - 7x + 12$.

Starting as before we write

$$x^2 - 7x + 12 = (x \qquad)(x \qquad)$$

and we look for two numbers which add together to give -7 and which multiply together to give 12. The two numbers we seek are -3 and -4 because

$$-3 \times -4 = 12$$
, and $-3 + -4 = -7$

So

$$x^2 - 7x + 12 = (x - 3)(x - 4)$$

Once again, note that the answer can be checked by multiplying-out the brackets again. The alternative, equivalent form (x-4)(x-3), is also correct.

Exercises

1. Factorise the following.

a)
$$x^2 + 8x + 15$$
 b) $x^2 + 10x + 24$ c) $x^2 + 9x + 8$ d) $x^2 + 9x + 14$ e) $x^2 + 15x + 36$ f) $x^2 + 2x - 3$ g) $x^2 + 2x - 8$ h) $x^2 + x - 20$

e)
$$x^2 + 15x + 36$$
 f) $x^2 + 2x - 3$ g) $x^2 + 2x - 8$ h) $x^2 + x - 20$

Quadratic expressions where the coefficient of x is not 1

Let us try to factorise the expression $3x^2 + 5x - 2$. We write, as before,

$$3x^2 + 5x - 2 = ($$
)()

and try, by inspection, to determine the contents of the brackets. There is no point writing)(x) because the two x terms would multiply to give x^2 , and in this example we are looking for $3x^2$. So try

$$3x^2 + 5x - 2 = (3x)(x)$$

which will certainly generate the term $3x^2$. The constant term -2 can be generated from the numbers -2 and 1, or alternatively -1 and 2. So, we are led to consider the following combinations

$$(3x-2)(x+1),$$
 $(3x+1)(x-2),$ $(3x-1)(x+2),$ $(3x+2)(x-1)$

all of which generate the correct term in x^2 and the correct constant term. However, only one of these generates the correct x term, 5x. By inspection we find

$$3x^2 + 5x - 2 = (3x - 1)(x + 2)$$

Example

Factorise $2x^2 + 5x - 7$.

To generate the term $2x^2$ we can write

$$2x^2 + 5x - 7 = (2x)(x)$$

To generate the constant term -7 we need two numbers which multiply together to give -7. Recognise that to produce a negative result one factor must be positive and one must be negative. We are led to consider -7 and 1, or alternatively -1 and 7. So, we consider the following combinations

$$(2x-7)(x+1),$$
 $(2x+1)(x-7),$ $(2x-1)(x+7),$ $(2x+7)(x-1)$

By inspection the correct factorisation is $2x^2 + 5x - 7 = (2x + 7)(x - 1)$.

Exercises

2 Factorise the following.

a)
$$2x^2 + 11x + 5$$
 b) $3x^2 + 19x + 6$ c) $3x^2 + 17x - 6$ d) $6x^2 + 7x + 2$ e) $7x^2 - 6x - 1$ f) $12x^2 + 7x + 1$ g) $8x^2 + 6x + 1$ h) $8x^2 - 6x + 1$

e)
$$7x^2 - 6x - 1$$
 f) $12x^2 + 7x + 1$ g) $8x^2 + 6x + 1$ h) $8x^2 - 6x + 1$

Answers

1. a)
$$(x+3)(x+5)$$
 b) $(x+4)(x+6)$ c) $(x+1)(x+8)$ d) $(x+2)(x+7)$ e) $(x+3)(x+12)$ f) $(x+3)(x-1)$ g) $(x+4)(x-2)$ h) $(x+5)(x-4)$

e)
$$(x+3)(x+12)$$
 f) $(x+3)(x-1)$ g) $(x+4)(x-2)$ h) $(x+5)(x-4)$

2. a)
$$(2x+1)(x+5)$$
 b) $(3x+1)(x+6)$ c) $(3x-1)(x+6)$ d) $(2x+1)(3x+2)$ e) $(7x+1)(x-1)$ f) $(3x+1)(4x+1)$ g) $(2x+1)(4x+1)$ h) $(2x-1)(4x-1)$

e)
$$(7x+1)(x-1)$$
 f) $(3x+1)(4x+1)$ g) $(2x+1)(4x+1)$ h) $(2x-1)(4x-1)$