NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1 EXAMINATION 2000-2001

MA1102 CALCULUS

October/November 2000 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO (2) sections: Section A and Section B. It contains a total of SIX (6) questions and comprises FIVE (5) printed pages.
2. Answer ALL questions in Section A The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO (2) questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]
Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cl}
2 x^{3}+1, & x<-1 \\
x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right), & -1 \leq x \leq 1 \text { and } x \neq 0 \\
x^{2}+1, & x>1 \\
0, & x=0
\end{array}\right.
$$

(a) Find the range of the function f.
(b) Determine if f is surjective.
(c) Determine all x in \mathbf{R} at which the function f is continuous.
(d) Is the function f differentiable at $x=-1$? Justify your answer.
(e) Is the function f differentiable at $x=0$? Is it also twice differentiable at $x=0$? Justify your answer.

Question 2 [20 marks]
Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow-\infty} \frac{x^{2}-7\left|x^{3}\right|+10000}{51 x^{3}+x+100}$
(b) $\lim _{x \rightarrow 8} \frac{\sqrt{14+\sqrt[3]{x}}-4}{x-8}$.
(c) $\lim _{x \rightarrow 0} \frac{1-\cos (x)-2 \sin ^{2}(x)}{x}$.
(d) $\lim _{x \rightarrow \infty}\left(\sqrt{1+\frac{1}{2} x+x^{2}}-\sqrt{1-\frac{1}{2} x+x^{2}}\right)$.
(e) $\lim _{x \rightarrow \infty}(\ln (\ln (x)))^{\frac{1}{x}}$.

Question 3 [20 marks]

(a) Evaluate $\int \frac{1}{\left(x^{2}+x+1\right)\left(x^{2}+x+2\right)} d x$.
(b) Determine the derivative of $\sin ^{-1}(a x)$, where a is a non zero constant in the interval $(-1,1)$.

Use this or otherwise, evaluate $\int \sin ^{-1}(29 x) d x$.
(c) Evaluate $\int_{0}^{2}\left[x^{2}\right] d x$, where $[t]$ denotes the greatest integer less than or equal to t.
(d) Find an antiderivative of $g(x)$, which is defined by

$$
g(x)=\left\{\begin{array}{r}
5 x^{4}+1, x \geq 1 \\
x^{2}+5, x<1
\end{array} .\right.
$$

SECTION B

Answer not more than TWO (2) questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]
(a) Find the critical points of the function g, defined by

$$
g(x)=\left\{\begin{array}{cc}
x^{2}-2 x+1, & 0 \leq x \leq 3 \\
157-x^{3}+18 x^{2}-96 x, & 3<x \leq 9
\end{array},\right.
$$

in the interval $(0,9)$. Determine the absolute maximum and the absolute minimum values of the function in the interval $[0,9]$.
(b) Show that

$$
\frac{1}{65} \ln (2) \leq \int_{\ln (2)}^{2 \ln (2)} \frac{1}{e^{3 x}+1} d x \leq \frac{1}{9} \ln (2)
$$

(c) Suppose f is a continuous function defined on the closed interval $[0,1]$ such that $f(0)=f(1)$. Prove that there exists a point c in $\left[\frac{1}{5}, 1\right]$ such that $f(c)=f\left(\frac{1}{4}\left(c-\frac{1}{5}\right)\right)$. Hence or otherwise deduce that there exists a point c in $\left[\frac{1}{5}, 1\right]$ such that

$$
\sin (\pi c)=\sin \left(\frac{\pi c}{4}-\frac{\pi}{20}\right)
$$

Question 5 [20 marks]

Let the function f be defined on \mathbf{R} by

$$
f(x)=\left\{\begin{array}{cc}
\frac{2 x}{x+1}, & x \geq 1 \\
2 x^{3}-3 x+2, & x<1
\end{array} .\right.
$$

(a) Determine if the function f is continuous at $x=1$.
(b) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(c) Find the relative extrema of f.
(d) Find the intervals on which the graph of f is concave upward or concave downward.
(e) Find the points of inflection of the graph of f.
(f) Sketch the graph of f.

Question 6 [20 marks]
(a) Differentiate the following functions.
(i) $h(x)=(\tan (x))^{\left(\frac{1}{x^{3}}\right)}, x>0$.
(ii) $j(x)=\int_{\sin (x)}^{\cos \left(x^{2}\right)} \frac{1}{2+t^{2}+\cos (t)} d t$.
(b) Suppose that f is a differentiable function with the property that
(1) $f(x+y)=f(x)+f(y)+7 x y$ and
(2) $\lim _{h \rightarrow 0} \frac{f(h)}{h}=4$.

Find $f(0)$ and $f^{\prime}(x)$.
(c) Find the following limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i^{3}}{n^{4}}+\frac{\sqrt{i}}{n \sqrt{n}}\right)$.

END OF PAPER

Answer To MA1102 Calculus

SECTION A (Compulsory)

1. The function f is defined by $f(x)=\left\{\begin{array}{cc}2 x^{3}+1, & x<-1 \\ x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right), & -1 \leq x \leq 1 \text { and } x \neq 0 \\ x^{2}+1, & x>1 \\ 0, & x=0\end{array}\right.$.
(a) For $x<-1, f(x)=2 x^{3}+1<-1$. Also, for $x<-1,2 x^{3}+1<-1 \Leftrightarrow x<-1$. Thus f maps $(-\infty,-1)$ onto $(-\infty,-1)$. (Because for any $y<-1$, we can take $x=\sqrt[3]{\frac{y-1}{2}}(<-1)$ so that f $(x)=y)$ Also, for $-1 \leq x \leq 1,-1 \leq f(x) \leq 1$. This is seen as follows. For $-1 \leq x \leq 1$ and $x \neq 0,|f(x)|=\left|x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)\right| \leq|x|^{6} \leq 1$. Now $f(0)=0$. Thus $-1 \leq f(x) \leq 1$. Therefore, $f(-1)=-1$ is the absolute minimum of f on $[-1,1]$ and $f(1)=$ 1 is the absolute maximum of f on $[-1,1]$. Assuming that f is continuous on $[-1,1]$ (as we shall show in part (d) below), by the Intermediate Value Theorem, f maps the interval $[-1,1]$ onto $[-1,1]$.

One alternative answer for deducing this: Examine the behaviour of the sine function. Note that $x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)$ is continuous on the interval $[1 / \sqrt[3]{2}, 1]$. The interval $[1 / \sqrt[3]{2}, 1]$ is mappped in a one-one way onto $[\pi / 2, \pi]$ under the function $\pi /\left(2 x^{3}\right)$. Now the derivative of $x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)$ is $6 x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right)-x^{2} \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)$ for x in $[1 / \sqrt[3]{2}, 1]$ and is positive on $(1 / \sqrt[3]{2}$, 1) since $6 x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right)$ and $-x^{2} \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)$ are positive there. Thus f is increasing on $[1 / \sqrt[3]{2}$, 1] and the image of $[1 / \sqrt[3]{2}, 1]$ under the function $x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)$ and so under f is $[1 / 4 \sin (\pi)$, $\sin (\pi / 2)]=[0,1]$. Similarly we can deduce that $x^{6} \sin \left(\frac{\pi^{x}}{2 x^{3}}\right)$ and (therefore) f maps $[-1$, $-1 / \sqrt[3]{2}$] onto $[-1,0]$. Since for $-1 \leq x \leq 1$ and $x \neq 0,|f(x)|=\left|x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)\right| \leq|x|^{6} \leq 1$ and $f(0)=0$, the above argument says that f maps the interval $[-1,1]$ onto $[-1,1]$.] (All the while we are assuming the continuity of $x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)$ on the respective intervals.)
(There is a distinction between saying f is continuous on a non trivial interval $[a, b]$ and continuity at a point. The function f is continuous on $[a, b]$ means that f is continuous at each point of the open interval (a, b), the right limit at $x=a, \quad \lim _{x \rightarrow a^{+}} f(x)$ is equal to $f(a)$ and the left limit at $x=b, \lim _{x \rightarrow b^{-}} f(x)$ is equal to $f(b)$. It does not imply that f is continuous at a or at b. In fact it need not be. The left limit at $a, \lim _{x \rightarrow a-} f(x)$ may not exist and when it does, it may not be equal to $f(a)$. The same thing can be said about the right limit at b, it need not exist or equal to $f(b)$. For our function f, f is not continuous at $x=1$; but it is continuous on $[-1,1]$.)
Finally for $x>1, f(x)=x^{2}+1>2$. And for any $y>2$, we can take $x=\sqrt{y-1}>1$ so that $f(x)=y$. Hence f maps $(1, \infty)$ onto $(2, \infty)$. Hence the range of f is $(2, \infty) \cup[-1,1] \cup(-\infty,-1)=(-\infty, 1] \cup(2, \infty)$.
(b) By part (a) Range $(f)=(-\infty, 1] \cup(2, \infty) \neq \mathbf{R}=\operatorname{codomain}(f)$, therefore f is not surjective.
(c) When $x<-1, f(x)=2 x^{3}+1$, which is a polynomial function, therefore f is continuous on $(-\infty,-1)$, since any polynomial function is continuous on the real numbers and so is continuous on any open interval. When $-1<x<1$ and $x \neq 0, f(x)=x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)$ and $\operatorname{since} x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)$ is continuous on $(-1,0)$ and on $(0,1), f$ is continuous on the union of these two intervals. Finally when $x>1, f(x)$ is a polynomial function and so it is continuous for $x>1$. Thus it remains to check if f is continuous at $x=-1,0$ or 1 . Consider the left limit at $x=1$,

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)=1^{6} \sin \left(\frac{\pi}{2}\right)=1 \text { and the right limit at } x=1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}+1=2 .
\end{aligned}
$$

Thus $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$ and so the $\lim _{x \rightarrow 1} f(x)$ does not exist and f is not continuous at $x=$ 1.

Now consider the left limit of f at $x=-1$,

$$
\begin{aligned}
& \lim _{x \rightarrow(-1)^{-}} f(x)=\lim _{x \rightarrow(-1)^{-}} 2 x^{3}+1=-1 \text { and the right limit at } x=-1, \\
& \lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)=1 \sin \left(-\frac{\pi}{2}\right)=-1=f(-1) .
\end{aligned}
$$

Thus $\lim _{x \rightarrow 1} f(x)=f(-1)$ and so f is continuous at $x=-1$.
Now $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)=0$ by the Squeeze Theorem and $f(0)=0$. Therefore, f is continuous at $x=0$. Hence f is continuous at x for all $x \neq 1$.
(d) f is differentiable at $x=-1$. This is seen as follows.

$$
\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)+1}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{6 x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right)-x^{2} \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)}{1}
$$

by L' Hôpital's Rule

$$
\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x+1}=6 .
$$

Therefore $\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}=\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x+1}$. Thus f is differentiable at $x=-1$ and $f^{\prime}(-1)=6$.
(e) $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{6} \sin \left(\frac{\pi}{2 x^{3}}\right)}{x}=\lim _{x \rightarrow 0} x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right)=0$ by the Squeeze Theorem since $-|x|^{5} \leq x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right) \leq|x|^{5}$ for $x \neq 0$ and $\lim _{x \rightarrow 0}|x|^{5}=0$. Therefore f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
Now for x in $(-1,1)-\{0\}, f^{\prime}(x)=6 x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right)-x^{2} \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)$
Thus

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{6 x^{5} \sin \left(\frac{\pi}{2 x^{3}}\right)-x^{2} \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)}{x} \\
& =\lim _{x \rightarrow 0} 6 x^{4} \sin \left(\frac{\pi}{2 x^{3}}\right)-x \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)=0
\end{aligned}
$$

since $\lim _{x \rightarrow 0} 6 x^{4} \sin \left(\frac{\pi}{2 x^{3}}\right)=0$ and $\lim _{x \rightarrow 0} x \frac{3 \pi}{2} \cos \left(\frac{\pi}{2 x^{3}}\right)=0$ by the Squeeze Theorem.
Therefore f is twice differentiable at $x=0$ and $f^{\prime \prime}(0)=0$.
2. (a) $\lim _{x \rightarrow-\infty} \frac{x^{2}-7|x|^{3}+10000}{51 x^{3}+x+100}=\lim _{x \rightarrow-\infty} \frac{x^{2}+7 x^{3}+10000}{51 x^{3}+x+100}=\frac{7}{51}$.
(b) $\lim _{x \rightarrow 8} \frac{\sqrt{14+\sqrt[3]{x}}-4}{x-8}=\lim _{x \rightarrow 8} \frac{\frac{1}{2}(14+\sqrt[3]{x})^{-\frac{1}{2}} \frac{1}{3} x^{-\frac{2}{3}}}{1}$ by L' Hôpital's Rule

$$
=\frac{1}{6 \cdot 4 \cdot 4}=\frac{1}{96}
$$

(c) $\lim _{x \rightarrow 0} \frac{1-\cos (x)-2 \sin ^{2}(x)}{x}=\lim _{\substack{x \rightarrow 0 \\ \text { by }}} \frac{\sin (x)-4 \sin (x) \cos (x)}{1}=0$
(d) $\lim _{x \rightarrow \infty}\left(\sqrt{1+\frac{1}{2} x+x^{2}}-\sqrt{1-\frac{1}{2} x+x^{2}}\right)=\lim _{x \rightarrow \infty} \frac{\left(1+\frac{1}{2} x+x^{2}\right)-\left(1-\frac{1}{2} x+x^{2}\right)}{\left(\sqrt{1+\frac{1}{2} x+x^{2}}+\sqrt{1-\frac{1}{2} x+x^{2}}\right)}$

$$
=\lim _{x \rightarrow \infty} \frac{x}{\left(\sqrt{1+\frac{1}{2} x+x^{2}}+\sqrt{1-\frac{1}{2} x+x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{1}{\left(\sqrt{\frac{1}{x^{2}}+\frac{1}{2 x}+1}+\sqrt{\frac{1}{x^{2}}-\frac{1}{2 x}+1}\right)}=\frac{1}{2}
$$

(e) $\lim _{x \rightarrow \infty} \frac{\ln (\ln (\ln (x)))}{x}=\lim _{x \rightarrow \infty} \frac{1}{\ln (\ln (x))} \frac{1}{x \ln (x)}=0$ by L' Hôpital's rule and the last equality is a consequence of the fact that $\lim _{x \rightarrow \infty} x \ln (x) \ln (\ln (x))=\infty$.

Therefore, $\lim _{x \rightarrow \infty}(\ln (\ln (x)))^{\frac{1}{x}}=e^{\lim _{x \rightarrow \infty} \frac{\ln (\ln (\ln (x)))}{x}}=e^{0}=1$.
3. (a) $\int \frac{d x}{\left(x^{2}+x+1\right)\left(x^{2}+x+2\right)}=\int\left(\frac{1}{x^{2}+x+1}-\frac{1}{x^{2}+x+2}\right) d x$
$=\int\left(\frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}-\frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{7}{4}}\right) d x=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)-\frac{2}{\sqrt{7}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{7}}\right)+C$
(b) Use the formula $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$.

Therefore $\frac{d}{d x} \sin ^{-1}(a x)=\left.a \frac{d}{d y} \sin ^{-1}(y)\right|_{y=a x}=a \frac{1}{\cos \left(\sin ^{-1}(y)\right)}=\frac{a}{\sqrt{1-a^{2} x^{2}}}$

$$
\begin{aligned}
\int \sin ^{-1}(29 x) d x & =x \sin ^{-1}(29 x)-\int x \frac{29}{\sqrt{1-29^{2} x^{2}}} d x=x \sin ^{-1}(29 x)+\frac{1}{58} \int \frac{-2 \cdot 29^{2} x}{\sqrt{1-29^{2} x^{2}}} d x \\
& =x \sin ^{-1}(29 x)+\frac{1}{29} \sqrt{1-29^{2} x^{2}}+C .
\end{aligned}
$$

(c) $\quad \int_{0}^{2}\left[x^{2}\right] d x=\int_{0}^{1}\left[x^{2}\right] d x+\int_{1}^{\sqrt{2}}\left[x^{2}\right] d x+\int_{\sqrt{2}}^{\sqrt{3}}\left[x^{2}\right] d x+\int_{\sqrt{3}}^{2}\left[x^{2}\right] d x$

$$
=\int_{0}^{1} 0 d x+\int_{1}^{\sqrt{2}} 1 d x+\int_{\sqrt{2}}^{\sqrt{3}} 2 d x+\int_{\sqrt{3}}^{2} 3 d x
$$

$$
=0+(\sqrt{2}-1)+2(\sqrt{3}-\sqrt{2})+3(2-\sqrt{3})=5-\sqrt{2}-\sqrt{3}
$$

(d) Note $g(x)$ is defined by $g(x)=\left\{\begin{array}{r}5 x^{4}+1, x \geq 1 \\ x^{2}+5, x<1\end{array}\right.$. We claim that g is a continuous function. For $x<1, g(x)$ is given by the polynomial function $x^{2}+5$, which we know is continuous and so g is continuous at x for all $x<1$. Similarly for $x>1, g(x)$ is given by the polynomial function $5 x^{4}+1$, and so g is continuous at x for all $x>1$. Now
$\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} x^{2}+5=6, \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{-}} 5 x^{4}+1=6$, and $g(1)=6$ and so $\lim _{x \rightarrow 1} g(x)=g(1)$ and g is continuous at $x=1$. Hence g is a continuous function. So we can use the Fundamental Theorem of Calculus to obtain the antiderivative.

For $x \leq 1, \int_{0}^{x} g(t) d t=\int_{0}^{x}\left(t^{2}+5\right) d t=\left[\frac{t^{3}}{3}+5 t\right]_{0}^{x}=\frac{x^{3}}{3}+5 x$ for $x \leq 1$ and for $x>1, \int_{0}^{x} g(t) d t=\int_{0}^{1} g(t) d t+\int_{1}^{x} g(t) d t$

$$
=\left[\frac{t^{3}}{3}+5 t\right]_{0}^{1}+\int_{1}^{x}\left(5 t^{4}+1\right) d t=5 \frac{1}{3}+\left[t^{5}+t\right]_{1}^{x}=x^{5}+x+\frac{10}{3}
$$

Therefore, any antiderivative of g is given by $h(x)+C$ where C is a constant and
$h(x)=\left\{\begin{array}{c}\frac{x^{3}}{3}+5 x, x \leq 1 \\ x^{5}+x+\frac{10}{3}, x>1\end{array}\right.$.

Question 4.
(a) Note that g is continuous on the closed interval [0, 9]. For $x<3 g(x)$ is given by the polynomial function $x^{2}-2 x+1$ and so g is continuous for $x<3$. Likewise for $x>3 g(x)$ is given by the polynomial function $157-x^{3}+18 x^{2}-96 x$ and so $g(x)$ is continuous for $x>3$. Now the left limit of g at $x=3, \quad \lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3^{-}} x^{2}-2 x+1=4=g$ (3) and the right limit $\lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{+}} 157-x^{3}+18 x^{2}-96 x=4$. Hence $\lim _{x \rightarrow 3} g(x)=g(3)$. Thus g is continuous at $x=3$. Hence g is continuous on $[0,9]$. Therefore the Extreme value Theorem says that g has an absolute maximum value and an absolute minimum value on $[0,9]$.
Now $\quad g^{\prime}(x)=\left\{\begin{array}{c}2 x-2,0<x<3 \\ -3 x^{2}+36 x-96,3<x<9\end{array}\right.$.

$$
=\left\{\begin{array}{c}
2 x-2,0<x<3 \tag{1}\\
-3\left(x^{2}-12 x+32\right), 3<x<9
\end{array}=\left\{\begin{array}{c}
2(x-1), 0<x<3 \\
-3(x-4)(x-8), 3<x<9
\end{array}\right.\right.
$$

Note that g is not differentiable at $x=3$. This is seen as follows:
$\lim _{x \rightarrow 3^{-}} \frac{g(x)-g(3)}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{g^{\prime}(x)}{1}=\lim _{x \rightarrow 3^{-}} 2(x-1)=4$ by L' Hôpital's Rule, and
$\lim _{x \rightarrow 3^{+}} \frac{g(x)-g(3)}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{g^{\prime}(x)}{1}=\lim _{x \rightarrow 3^{+}}-3(x-4)(x-8)=-15$ and so g is not differentiable at $x=3$. From (1) $g^{\prime}(x)=0$ in $(0,9)$ if and only if $x=1,4$ or 8 . Hence the critical points are $1,3,4$ and 8 . Now $g(0)=1, g(1)=0, g(3)=4$ and $g(4)=-3, g(8)=29$ and $g(9)=22$. Therefore the absolute maximum value of g is 29 and the absolute minimum value of g is -3 .
(b) By the Mean Value Theorem for Integral,

$$
\begin{equation*}
\frac{\int_{\ln (2)}^{2 \ln (2)} \frac{1}{1+e^{3 x}} d x}{2 \ln (2)-\ln (2)}=\frac{1}{1+e^{3 c}} \tag{2}
\end{equation*}
$$

for some c in the interval $[\ln (2), 2 \ln (2)]$.
Since $1+e^{3^{x}}$ is an increasing function, $\frac{1}{1+e^{3 x}}$ is a decreasing function. Therefore, $\frac{1}{1+e^{3(2 \ln (2))}} \leq \frac{1}{1+e^{3 c}} \leq \frac{1}{1+e^{3 \ln (2)}}$ and since $e^{3(2 \ln (2))} \quad=2^{6}=64$ and $e^{3 \ln (2)} \quad=2^{3}=8$, $\frac{1}{1+64} \leq \frac{1}{1+e^{3 c}} \leq \frac{1}{1+8}$. Thus from (2) $\frac{1}{1+64} \leq \frac{\int_{\ln (2)}^{2 \ln (2)} \frac{1}{1+e^{3 x}} d x}{\ln (2)} \leq \frac{1}{1+8}$ and so $\frac{\ln (2)}{65} \leq \int_{\ln (2)}^{2 \ln (2)} \frac{1}{1+e^{3 x}} d x \leq \frac{\ln (2)}{9}$.
(c) Let $g(x)=f(x)-f\left(\frac{1}{4}\left(x-\frac{1}{5}\right)\right)$. Then g is a continuous function on $[1 / 5,1]$ since f is continuous on $[0,1]$ and $\frac{1}{4}\left(x-\frac{1}{5}\right)$ is a continuous function and because we know that the difference and composite of two continuous functions are also continuous functions. Now $g\left(\frac{1}{5}\right)=f\left(\frac{1}{5}\right)-f(0)=f\left(\frac{1}{5}\right)-f(1)$ since $f(0)=f(1)$. Also $g(1)=f(1)-f\left(\frac{1}{5}\right)=-g\left(\frac{1}{5}\right)$. Therefore either $\mathrm{g}(1)=\mathrm{g}(1 / 5)=0$ or they have opposite signs. So if $g(1) \neq 0$ (and so $\mathrm{g}(1 / 5) \neq$ 0), by the Intermediate Value Theorem, there exists a point c in $[1 / 5,1]$ such that $g(c)=0$. In any case, we have a point c in $[1 / 5,1]$ such that $g(c)=0$. That is, $f(c)=f\left(\frac{1}{4}\left(c-\frac{1}{5}\right)\right)$. Take $f(x)=\sin (\pi x)$. Then we have a point c in $[1 / 5,1]$ such that

$$
\sin (\pi c)=\sin \left(\frac{1}{4} \pi\left(c-\frac{1}{5}\right)\right)=\sin \left(\frac{\pi c}{4}-\frac{\pi}{20}\right)
$$

5. $f(x)=\left\{\begin{array}{c}2-\frac{2}{x+1}, x \geq 1 \\ 2 x^{3}-3 x+2, x<1\end{array}\right.$.
(a) f is continuous at $x=1$ if and only if $\lim _{x \rightarrow 1} f(x)=f(1)$.

Now $f(1)=2-\frac{2}{1+1}=1, \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2-\frac{2}{x+1}=2-1=1$ and
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x^{3}-3 x+2=2-3+2=1$. Thus $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
(b) $\quad f^{\prime}(x)=\left\{\begin{array}{c}\frac{2}{(x+1)^{2}}, x>1 \\ 6 x^{2}-3, x<1\end{array}=\left\{\begin{array}{c}\frac{2}{(x+1)^{2}}, x>1 \\ 6\left(x+\frac{\sqrt{2}}{2}\right)\left(x-\frac{\sqrt{2}}{2}\right), x<1\end{array}\right.\right.$

When $x<-\frac{\sqrt{2}}{2}$, by (1), $f^{\prime}(x)>0$ and so since f is continuous at $x=-\frac{\sqrt{2}}{2}, f$ is increasing on the interval $\left(-\infty,-\frac{\sqrt{2}}{2}\right]$. Also from (1) when $-\frac{\sqrt{2}}{2}<x<\frac{\sqrt{2}}{2}(<1)$, so that $\left(x+\frac{\sqrt{2}}{2}\right)>0$ and $\left(x-\frac{\sqrt{2}}{2}\right)<0$ and $f^{\prime}(x)<0$. Hence again since f is continuous at $x=$ $-\frac{\sqrt{2}}{2}$ and at $x=\frac{\sqrt{2}}{2}, f$ is decreasing on the closed interval $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$. Now when $\frac{\sqrt{2}}{2}<x<1,\left(x+\frac{\sqrt{2}}{2}\right)>0$ and $\left(x-\frac{\sqrt{2}}{2}\right)>0$ and so by (1) $f^{\prime}(x)>0$. Thus f is increasing on the interval $\left[\frac{\sqrt{2}}{2}, 1\right]$ since f is also continuous at $x=1$ by part (a). Clearly, by (1), for x $>1, f^{\prime}(x)>0$. Thus f is increasing on the interval $[1, \infty)$. Hence f is increasing on the interval $\left[\frac{\sqrt{2}}{2}, \infty\right)$.
(c) From part (b), $f\left(-\frac{\sqrt{2}}{2}\right)=-2 \frac{2 \sqrt{2}}{8}+3 \frac{\sqrt{2}}{2}+2=2+\sqrt{2}$ is a relative maximum and $f\left(\frac{\sqrt{2}}{2}\right)=2 \frac{2 \sqrt{2}}{8}-3 \frac{\sqrt{2}}{2}+2=2-\sqrt{2}$ is a relative minimum value.
(d) $\quad f^{\prime \prime}(x)=\left\{\begin{array}{c}\frac{-4}{(x+1)^{3}}, x>1 \\ 12 x, x<1\end{array}\right.$

From (2) for $x<0, f^{\prime \prime}(x)=12 x<0$ and so the graph of f is concave downward on the interval $(-\infty, 0)$. From (2) for $0<x<1 f^{\prime \prime}(x)=12 x>0$ and so the graph of f is concave upward on the interval (0,1). Finally from (2) again, for $x>1, f^{\prime \prime}(x)=\frac{-4}{(x+1)^{3}}<0$ and so the graph of f is concave downward on the interval $(1, \infty)$.
(e) From part (d), there is a change of concavity of the graph of f before and after the points $x=$ 0 and $x=1$. Therefore the points of inflection of the graph of f are $(0, f(0))=(0,2)$ and $(1, f(1))=(1,1)$.
(f) The graph of f :

6. (a)
(i) $\ln (h(x))=\frac{1}{x^{3}} \ln (\tan (x))$. Therefore, $\frac{h^{\prime}(x)}{h(x)}=-\frac{3}{x^{4}} \ln (\tan (x))+\frac{1}{x^{3}} \frac{\sec ^{2}(x)}{\tan (x)}$. Hence

$$
\begin{aligned}
h^{\prime}(x) & =\left(-\frac{3}{x^{4}} \ln (\tan (x))+\frac{1}{x^{3}} \frac{\sec ^{2}(x)}{\tan (x)}\right)(\tan (x))\left(\frac{1}{x^{3}}\right) \\
& =\left(-\frac{3}{x^{4}} \ln (\tan (x))+\frac{1}{x^{3}} \frac{1}{\sin (x) \cos (x)}\right)(\tan (x))\left(\frac{1}{x^{3}}\right)
\end{aligned}
$$

(ii) $j(x)=\int_{\sin (x)}^{\cos \left(x^{2}\right)} \frac{1}{2+t^{2}+\cos (t)} d t=\int_{0}^{\cos \left(x^{2}\right)} \frac{1}{2+t^{2}+\cos (t)} d t-\int_{0}^{\sin (x)} \frac{1}{2+t^{2}+\cos (t)} d t$. Therefore, by the Fundamental Theorem of Calculus and the Chain Rule,

$$
j^{\prime}(x)=\frac{-2 x \sin \left(x^{2}\right)}{2+\cos ^{2}\left(x^{2}\right)+\cos \left(\cos \left(x^{2}\right)\right)}-\frac{\cos (x)}{2+\sin ^{2}(x)+\cos (\sin (x))} .
$$

(b) Note that f satisfies $f(x+y)=f(x)+f(y)+7 x y$
and

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(h)}{h}=4 \tag{1}
\end{equation*}
$$

(i) From (1), $f(0)=f(0+0)=f(0)+f(0)+0=2 f(0)$ and so $f(0)=0$.
(ii) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(x)+{ }^{h}(h)+7 x h-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(h)+7 x h}{h} \quad \text { by (1) } \\
& =\lim _{h \rightarrow 0} \frac{f(h)}{h}+7 x=7 x+4 \text { by (2). }
\end{aligned}
$$

(c) Write the following as a Riemann sum

$$
\sum_{i=1}^{n}\left(\frac{i^{3}}{n^{4}}+\frac{\sqrt{i}}{n \sqrt{n}}\right)=\sum_{i=1}^{n}\left(\frac{i^{3}}{n^{3}}+\frac{\sqrt{i}}{\sqrt{n}}\right) \frac{1}{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $x_{0}<x_{1}<\ldots<x_{n}$ is a regular partition and $\Delta x_{i}=x_{i}-x_{i-1}$.
Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing

$$
f\left(x_{i}\right) \Delta x \text { with }\left(\frac{i^{3}}{n^{3}}+\frac{\sqrt{i}}{\sqrt{n}}\right) \frac{1}{n}=\left(\left(\frac{i}{n}\right)^{3}+\sqrt{\frac{i}{n}}\right) \frac{1}{n}
$$

we would want $f\left(x_{i}\right)=\left(\left(\frac{i}{n}\right)^{3}+\sqrt{\frac{i}{n}}\right) \frac{1}{n}=x_{i}^{3}+\sqrt{x_{i}}$. Hence $f(x)=x^{3}+\sqrt{x}$.
Therefore $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i^{3}}{n^{4}}+\frac{\sqrt{i}}{n \sqrt{n}}\right)=\int_{0}^{1}\left(x^{3}+\sqrt{x}\right) d x=\left[\frac{x^{4}}{4}+\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1}$

$$
=\frac{1}{4}+\frac{2}{3}=\frac{11}{12} .
$$

