NATIONAL UNIVERSITY OF SINGAPORE
 SEMESTER 2 EXAMINATION 2000 - 2001

 MA1102 CALCULUS

 MA1102 CALCULUS}

April 2001 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO (2) sections: Section A and Section B. It contains a total of SIX (6) questions and comprises FIVE (5) printed pages.
2. Answer ALL questions in Section A The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO (2) questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]
Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{rr}
x^{2}-25, & x<-5 \\
3, & x=-5 \\
4 x+20, & -5<x<-1 \\
2 x^{2}+14, & x \geq-1
\end{array} .\right.
$$

(a) Find the range of the function f.
(b) Determine if f is surjective.
(c) Determine all x in \mathbf{R} at which the function f is continuous.
(d) Find all x in \mathbf{R} at which the function f is differentiable. Justify your answer.
(e) Compute $\int_{-6}^{0} f(x) d x$.

Question 2 [20 marks]
Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow-\infty} \frac{x^{2}-8\left|x^{3}\right|+7}{24 x^{3}+17 x+3}$.
(b) $\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{\sin (x)}$.
(c) $\lim _{x \rightarrow \infty} \frac{x(2+\cos (x))}{x^{2}+1}$.
(d) $\lim _{x \rightarrow 3} \frac{\sqrt{16+x^{2}}-5}{x-3}$.
(e) $\lim _{x \rightarrow 0^{+}}(\sin (x))^{\sin (x)}$.

Question 3 [20 marks]

(a) Evaluate $\int \frac{x e^{\frac{1}{2} x^{2}}-\sin (2 x)}{e^{\frac{1}{2} x^{2}}+\cos ^{2}(x)+2} d x$.
(b) Compute $\int_{-1}^{3} \sqrt{7+|x|} d x$.
(c) Find an antiderivative of $g(x)$, which is defined by

$$
g(x)=\left\{\begin{array}{l}
x^{3}+7, x \geq 1 \\
2 x^{4}+6, x<1
\end{array} .\right.
$$

(d) Evaluate $\int \frac{\sqrt{x}}{\sqrt{\sqrt{x}+3}} d x$.
(e) Evaluate $\int x^{3} \cos (x) d x$.

SECTION B

Answer not more than TWO (2) questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

(a) Let $g:[-2,6] \rightarrow \mathbf{R}$ be a function defined by

$$
g(x)=\left\{\begin{array}{lr}
x^{2}+2 x-5, & -2 \leq x<2 \\
x^{3}-12 x^{2}+45 x-47, & 2 \leq x \leq 6
\end{array} .\right.
$$

(i) Find the critical points of the function g in the interval $(-2,6)$.
(ii) Hence, or otherwise, determine the absolute maximum and the absolute minimum values of the function g.
(b) Let $h:[0,1] \rightarrow \mathbf{R}$ be a function defined by

$$
h(x)=\frac{x+1}{e^{x}+1} .
$$

Prove that there exists a real number c in the interval $[0,1]$ such that $h(c)=c$.
(c) Find $\frac{d^{2} y}{d x^{2}}$ by implicit differentiation if $y^{2}+10 x=\cos (5 y)$.

Question 5 [20 marks]

Let the function f be defined on the real numbers \mathbf{R} by

$$
f(x)=\left\{\begin{array}{cc}
4 x^{3}+3 x^{2}-6 x-1, & x \geq 1 \\
1-\frac{2 x}{1+x^{2}}, & x<1 .
\end{array}\right.
$$

(a) Determine if the function f is continuous at $x=1$.
(b) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(c) Find the relative extrema of f.
(d) Find the intervals on which the graph of f is (i) concave upward and (ii) concave downward.
(e) Find the points of inflection of the graph of f.
(f) Sketch the graph of f.

Question 6 [20 marks]

(a) Differentiate each of the following functions.
(i) $h(x)=\left(\ln \left(e+x^{2}\right)+e^{x}\right)^{\cot (x)}, x>0$.
(ii) $j(x)=\int_{-x}^{\sin (x)} \frac{t}{2+\sin \left(t^{2}\right)} d t$.
(b) Let the function f be defined on the real numbers \mathbf{R} by

$$
f(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

(i) Prove that the function f is an increasing function and that f has an inverse function f^{-1}.
(ii) Hence, or otherwise, find the derivative of f^{-1} at $x=0$.
(iii) Show that for $x \geq 0, e^{x^{2}} \geq 1+x^{2}$. Use this or otherwise show that

$$
f(1) \leq \frac{\pi}{4}
$$

(iv) By considering that for $x>1, f(x)=\int_{0}^{1} e^{-t^{2}} d t+\int_{1}^{x} e^{-t^{2}} d t$ or otherwise, show that for all $x \geq 0, f(x)<1$. (You may assume that e >2.7 and $\pi<3.2$.)

END OF PAPER

Answer To MA1102 Calculus

SECTION A (Compulsory)

1. The function f is defined by $f(x)=\left\{\begin{array}{c}x^{2}-25, \quad x<-5 \\ 3, \quad x=-5 \\ 4 x+20,-5<x<-1 \\ 2 x^{2}+14, \quad x \geq-1\end{array}\right.$
(a) For $x<-5, f(x)=x^{2}-25>0$. Also, for $x<-5, x^{2}-25>0 \Leftrightarrow x<-5$.

Thus f maps $(-\infty,-5)$ onto $(0, \infty)$. (Because for any $y>0$, we can take $x=-\sqrt{y+25}(<-5)$ so that $f(x)=y)$ Also, for $-5<x<-1, f(x)=4 x+20$. Therefore, $0<f(x)<16$. This is because $-5<x<-1 \Leftrightarrow 0<4 x+20<16$. For any y with $0<y<$ 16 we can take $x=\frac{y-20}{4}$ and for this value of $x,-5<x<-1$. It follows that f maps $(-5,-1)$ onto $(0,16)$. Now for $x \geq-1, f(x)=2 x^{2}+14 \geq 14$. Also for any $y \geq 14$, we can take $x=\sqrt{\frac{y-14}{2}} \geq 0>-1$. Therefore f maps $[-1, \infty)$ onto $[14, \infty)$. Hence the range of f is $f((-\infty,-5)) \cup\{f(-5)\} \cup f((-5,-1)) \cup f([-1, \infty))=(0, \infty) \cup\{3\} \cup(0$, 16) $\cup[14, \infty)=(0, \infty)$.
(b) By part (a) Range $(f)=(0, \infty) \neq \mathbf{R}=$ codomain of f. Therefore, f is not surjective.
(c) When $x<-5, f(x)=x^{2}-25$, which is a polynomial function, therefore f is differentiable on $(-\infty,-5)$, since any polynomial function is differentiable on the real numbers and so is differentiable on any open interval. When $-5<x<-1, f(x)=4 x+20$ and is a polynomial function and so f is differentiable on $(-5,-1)$. Likewise f is differentiable on $(-1, \infty)$ since $f(x)=2 x^{2}+14$, a polynomial function. Thus we can conclude that f is differentiable at x for $x \neq-5,-1$. Since differentiability implies continuity we conclude that f is continuous at x in \mathbf{R} for $x \neq-5,-1$. Thus it remains to check if f is continuous at $x=-$ 5 or -1 . Consider the left limit at $x=-5$,

$$
\begin{aligned}
& \lim _{x \rightarrow-5^{-}} f(x)=\lim _{x \rightarrow-5^{-}} x^{2}-25=0 \text { and the right limit at } x=-5 \\
& \lim _{x \rightarrow-5^{+}} f(x)=\lim _{x \rightarrow-5^{+}} 4 x+20=0 .
\end{aligned}
$$

Thus since $\lim _{x \rightarrow-5^{-}} f(x)=\lim _{x \rightarrow-5^{+}} f(x), \lim _{x \rightarrow-5} f(x)=0$. But $f(-5)=3$ and so
$\lim _{x \rightarrow-5} f(x) \neq f(-5)$ and thus f is not continuous at $x=-5$. Now consider the left limit of f at $x=-1$,

$$
\begin{aligned}
& \lim _{x \rightarrow(-1)^{-}} f(x)=\lim _{x \rightarrow-1)^{-}} 4 x+20=16 \text { and the right limit at } x=-1, \\
& \lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} 2 x^{2}+14=16=f(-1) .
\end{aligned}
$$

Thus $\lim _{x \rightarrow-1} f(x)=f(-1)$ and so f is continuous at $x=-1$.
Hence f is continuous at x for all $x \neq-5$.
(d) From part (c) since f is not continuous at $x=-5, f$ is not differentiable at $x=-5$.

Now it remains to check differentiability at $x=-1$.

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{2 x^{2}+14-16}{x+1}=\lim _{x \rightarrow 1^{+}} 2(x-1)=-4 \\
& \lim _{x \rightarrow-1^{-}} \frac{f(x)^{-}-f^{\prime}(-1)}{x+1}=\lim _{x \rightarrow-1^{-}} \frac{4 x+20-16}{x+1}=\lim _{x \rightarrow-1^{-}} 4=4 .
\end{aligned}
$$

Thus f is not differentiable at $x=-1$ since $\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x+1} \neq \lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}$.
Therefore, f is differentiable at x for x not equal to -5 or -1 .
(e) $\int_{-6}^{0} f(x) d x=\int_{-6}^{-5} f(x) d x+\int_{-5}^{-1} f(x) d x+\int_{-1}^{0} f(x) d x$

$$
\begin{aligned}
& \left.=\int_{-6}^{-5}\left(x^{2}-25\right)\right) d x+\int_{-5}^{-1}(4 x+20) d x+\int_{-1}^{0}\left(2 x^{2}+14\right) d x \\
& =\left[\frac{x^{3}}{3}-25 x\right]_{-6}^{-5}+\left[2 x^{2}+20 x\right]_{-5}^{-1}+\left[\frac{2 x^{3}}{3}+14 x\right]_{-1}^{0} \\
& =\left[\frac{6^{3}-5^{3}}{3}-25\right]+[2(1-25)+20 \times 4]+\left[\frac{2}{3}+14\right]=52
\end{aligned}
$$

2. (a) $\lim _{x \rightarrow-\infty} \frac{x^{2}-8|x|^{3}+7}{24 x^{3}+17 x+3}=\lim _{x \rightarrow-\infty} \frac{x^{2}+8 x^{3}+7}{24 x^{3}+17 x+3}=\frac{1}{3}$.
(b) $\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{\sin (x)}=\lim _{x \rightarrow 0} \frac{x}{\sin (x)} \lim _{x \rightarrow 0} x \sin (1 / x)=1 \times 0=0 \quad$ since $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=\lim _{x \rightarrow 0} \frac{1}{\cos (x)}=1$ by L' Hôpital's Rule and $\lim _{x \rightarrow 0} x \sin (1 / x)=0$ by the Squeeze Theorem because for $x \neq 0$
$-|x| \leq x \sin (1 / x) \leq|x|$ and $\lim _{x \rightarrow 0}|x|=0$.
(c) $\lim _{x \rightarrow \infty} \frac{x(2+\cos (x))}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{2 / x+\cos (x) / x}{1+1 / x^{2}}=\frac{\lim _{x \rightarrow \infty} 2 / x+\lim _{x \rightarrow \infty} \cos (x) / x}{\lim _{x \rightarrow \infty} 1+1 / x^{2}}=\frac{0+0}{1+0}=0$
since $\lim _{x \rightarrow \infty} 2 / x=0$ and $\lim _{x \rightarrow \infty} \cos (x) / x=0$ by the Squeeze Theorem because for $x>0$,

$$
-1 /|x| \leq \cos (x) / x \leq 1 /|x| \text { and } \lim _{x \rightarrow \infty} 1 /|x|=\lim _{x \rightarrow \infty}-1 /|x|=0 .
$$

(d) $\lim _{x \rightarrow 3} \frac{\sqrt{16+x^{2}}-5}{x-3}=\lim _{x \rightarrow 3} \frac{\frac{1}{2}\left(16+x^{2}\right)^{-1 / 2} 2 x}{1}=\frac{3}{\sqrt{25}}=\frac{3}{5}$ by L' Hôpital's rule.
(e) $\lim _{x \rightarrow 0^{+}} \sin (x) \ln (\sin (x))=\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin (x))}{\csc (x)}=\lim _{x \rightarrow 0^{+}}-\frac{\cot (x)}{\csc (x) \cot (x)}=\lim _{x \rightarrow 0^{+}}-\sin (x)=0$
by L'Hôpital's rule and the last equality is because $\lim _{x \rightarrow 0^{+}} \sin (x)=\sin (0)=0$. Therefore, $\lim _{x \rightarrow 0^{+}}(\sin (x))^{\sin (x)}=e^{\lim _{\rightarrow \infty} \sin (x) \ln (\sin (x))}=e^{0}=.1$
3. (a) $\int \frac{x e^{\frac{1}{2} x^{2}}-\sin (2 x)}{e^{\frac{1}{2} x^{2}}+\cos ^{2}(x)+2} d x=\int \frac{1}{e^{\frac{1}{2} x^{2}}+\cos ^{2}(x)+2} \frac{d y}{d x} d x$,

$$
\text { where } y=e^{\frac{1}{2} x^{2}}+\cos ^{2}(x)+2, \frac{d y}{d x}=x e^{\frac{1}{2} x^{2}}-\sin (2 x) \text {, }
$$

$$
=\int \frac{1}{y} d y \text { by substitution or change of variable }
$$

$$
=\ln |y|+C=\ln \left(e^{\frac{1}{2} x^{2}}+\cos ^{2}(x)+2\right)+C .
$$

(b) $\int_{-1}^{3} \sqrt{7+|x|} d x=\int_{0_{0}^{1}}^{0} \sqrt{7+|x|} d x+\int_{0}^{3} \sqrt{7+|x|} d x$

$$
=\int_{-1}^{0} \sqrt{7-x} d x+\int_{0}^{3} \sqrt{7+x} d x
$$

$$
=\left[-\frac{2}{3}(7-x)^{\frac{3}{2}}\right]_{-1}^{0}+\left[\frac{2}{3}(7+x)^{\frac{3}{2}}\right]_{0}^{3}
$$

$$
=\frac{2}{3}\left(8^{\frac{3}{2}}-7^{\frac{3}{2}}\right)+\frac{2}{3}\left(10^{\frac{3}{2}}-7^{\frac{3}{2}}\right)
$$

$$
=\frac{2}{3}(16 \sqrt{2}+10 \sqrt{10}-14 \sqrt{7})=\frac{4}{3}(8 \sqrt{2}+5 \sqrt{10}-7 \sqrt{7})
$$

(c) $g(x)=\left\{\begin{array}{c}x^{3}+7, x \geq 1 \\ 2 x^{4}+6, x<1\end{array}\right.$.

Note that $\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}\left(x^{3}+7\right)=8=g(1)$ and

$$
\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}\left(2 x^{4}+6\right)=8
$$

Therefore, $\lim _{x \rightarrow 1} g(x)=g(1)$ and so g is continuous at $x=1$. Since g is a polynomial function on the open interval $(-\infty, 1)$ and also on $(1, \infty), \mathrm{g}$ is continuous on these two intervals. Thus g is continuous on the whole of \mathbf{R}. Therefore we can use the Fundamental Theorem of Calculus to obtain an antiderivative. By the FTC,

$$
G(x)=\int_{1}^{x} g(t) d t \text { is an antiderivative of } \mathrm{g}(x) .
$$

Now $\quad G(x)=\int_{1}^{x} g(t) d t=\left\{\begin{array}{l}\int_{1}^{x} g(t) d t, x \geq 1 \\ \int_{1}^{x} g(t) d t, x<1\end{array}=\left\{\begin{array}{c}\int_{1}^{x}\left(t^{3}+7\right) d t, x \geq 1 \\ \int_{1}^{x}\left(2 t^{4}+6\right) d t, x<1\end{array}\right.\right.$

$$
=\left\{\begin{array}{c}
{\left[\frac{t^{4}}{4}+7 t\right]_{1}^{x}, x \geq 1} \\
{\left[\frac{2 t^{5}}{5}+6 t\right]_{1}^{x}, x \geq 1}
\end{array}=\left\{\begin{array}{c}
\frac{x^{4}}{4}+7 x-\frac{29}{4}, x \geq 1 \\
\frac{2 x^{5}}{5}+6 x-\frac{32}{5}, x \geq 1
\end{array} .\right.\right.
$$

(Any antiderivative of $\mathrm{g}(x)$ of the form $\mathrm{G}(x)+C$ is acceptable.).
(d) $\int \frac{\sqrt{x}}{\sqrt{\sqrt{x}+3}} d x=\int 4 x \frac{d y}{d x} d x$,

$$
\text { where } y=(\sqrt{x}+3)^{\frac{1}{2}}, \frac{d y}{d x}=\frac{1}{2 \sqrt{\sqrt{x}+3}} \frac{1}{2 \sqrt{x}} \text {, }
$$

$=4 \int\left(y^{2}-3\right)^{2} d y$ since $\sqrt{x}=y^{2}-3$,
$=4 \int\left(y^{4}-6 y^{2}+9\right) d y=4\left(\frac{1}{5} y^{5}-2 y^{3}+9 y\right)+C$
$=\frac{4}{5}(\sqrt{x}+3)^{\frac{5}{2}}-8(\sqrt{x}+3)^{\frac{3}{2}}+36(\sqrt{x}+3)^{\frac{1}{2}}+C$.
(e) $\int x^{3} \cos (x) d x=x^{3} \sin (x)-\int 3 x^{2} \sin (x) d x \quad$ by integration by parts

$$
=x^{3} \sin (x)-3\left(x^{2}(-\cos (x))+\int 2 x \cos (x) d x\right)
$$

by integration by parts applied to $\int x^{2} \sin (x) d x$

$$
\begin{aligned}
& \left.=x^{3} \sin (x)+3 x^{2} \cos (x)\right)-6 \int x \cos (x) d x \\
& \left.=x^{3} \sin (x)+3 x^{2} \cos (x)\right)-6\left(x \sin (x)-\int \sin (x) d x\right)
\end{aligned}
$$

by integration by parts applied to $\int x \cos (x) d x$

$$
\left.=x^{3} \sin (x)+3 x^{2} \cos (x)\right)-6 x \sin (x)-6 \cos (x)+C .
$$

Question 4.

(a) $g:[-2,6] \rightarrow \mathbf{R}$ is defined by $g(x)=\left\{\begin{array}{lr}x^{2}+2 x-5, & -2 \leq x<2 \\ x^{3}-12 x^{2}+45 x-47, & 2 \leq x \leq 6\end{array}\right.$.
(i) Note that g is continuous on the closed interval [$-2,6]$. For $-2 \leq x<2, g(x)$ is given by the polynomial function $x^{2}+2 x-5$ and so g is continuous on $[-2,2)$. Likewise for $2<x \leq 6$, $g(x)$ is given by the polynomial function $x^{3}-12 x^{2}+45 x-47$ and so $g(x)$ is continuous on (2, 6]. Now the left limit of g at $x=2, \lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}} x^{2}+2 x-5=3$ and the right limit $\lim _{x \rightarrow 2^{+}} g(x)=\lim _{x \rightarrow 2^{+}} x^{3}-12 x^{2}+45 x-47=3=g(2)$. Hence $\lim _{x \rightarrow 2} g(x)=g(2)$. Thus g is continuous at $x=2$. Hence g is continuous on $[-2,6]$. Therefore, the Extreme Value Theorem says that g has an absolute maximum value and an absolute minimum value on $[-2$, $6]$.

Now $\quad g^{\prime}(x)=\left\{\begin{array}{c}2 x+2,-2<x<2 \\ 3 x^{2}-24 x+45,2<x<6\end{array}\right.$.

$$
=\left\{\begin{array}{c}
2(x+1),-2<x<2 \tag{1}\\
3\left(x^{2}-8 x+15\right), 2<x<6
\end{array}=\left\{\begin{array}{c}
2(x+1),-2<x<2 \\
3(x-3)(x-5), 2<x<6
\end{array}\right.\right.
$$

Note that g is not differentiable at $x=2$. This is seen as follows:
$\lim _{x \rightarrow 2^{-}} \frac{g(x)-g(2)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{g^{\prime}(x)}{1}=\lim _{x \rightarrow 2^{-}} 2(x+1)=6$ by L'Hôpital's Rule, and
$\lim _{x \rightarrow 2^{+}} \frac{g(x)-g(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{g^{\prime}(x)}{1}=\lim _{x \rightarrow 2^{+}} 3(x-3)(x-5)=9$ and so g is not differentiable at x $=2$ since $\lim _{x \rightarrow 2^{-}} \frac{g(x)-g(2)}{x-2} \neq \lim _{x \rightarrow 2^{+}} \frac{g(x)-g(2)}{x-2}$. From (1), $g^{\prime}(x)=0$ in $(-2,2)$ if and only if $x=-1$ and $g^{\prime}(x)=0$ in $(2,6)$ if and only if $x=3$ or 5 . Hence the critical points in $(-2,6)$ are $-1,2,3$ and 5 .
(ii) Now $g(-2)=-5, g(-1)=-6, g(2)=3$ and $g(3)=7, g(5)=3$ and $g(6)=7$. Therefore, since g is continuous on $[-2,6]$, the absolute maximum value of g is 7 and the absolute minimum value of g is -6 .
(b) $\quad h:[0,1] \rightarrow \mathbf{R}$ is defined by $h(x)=\frac{x+1}{e^{x}+1}$. Then h is continuous on $[0,1]$.

Define a function $k:[0,1] \rightarrow \mathbf{R}$ by $k(x)=h(x)-x$. Then plainly, k is a continuous function on the closed and bounded interval $[0,1]$.
$k(x)=\frac{x+1}{e^{x}+1}-x=\frac{1-x e^{x}}{e^{x}+1} . \quad k(0)=\frac{1}{e^{0}+1}=\frac{1}{2}>0$ and $k(1)=\frac{1-e}{e+1}<0$ since $\mathrm{e}>1$.
Therefore, by the Intermediate Value Theorem, there exists a point c in $(0,1)$ such that $k(c)$ $=0$, i.e., $h(c)=c$.

Alternative solution:

For any real number $x, e^{x}>x$. (Why? Obviously, $x \leq 0$ implies $e^{x}>x$, and for $x>0$ $e^{x}>x$ if and only if $x>\ln (x)=\int_{1}^{x} \frac{1}{t} d t$ which is obviously true.)
Therefore $e^{x}+1>x+1$ and so
$0<h(x)=\frac{x+1}{e^{x}+1}<1$ for $0 \leq x \leq 1$.
Hence h maps $[0,1]$ into $[0,1]$.

Define a function $k:[0,1] \rightarrow \mathbf{R}$ by $k(x)=h(x)-x$. Then plainly, k is a continuous function on the closed and bounded interval $[0,1]$.
In particular $k(1)=h(1)-1<0$ by (1) and $k(0)=h(0)>0$ also by (1). Therefore, by the Intermediate Value Theorem, there exists a point c in $(0,1)$ such that $k(c)=0$, i.e., $h(c)=c$.
[Actually, you need only show $h(0)>0$ and $h(1)<1$. Obviously, $h(0)=\frac{1}{e^{0}+1}=\frac{1}{2}>0$ and $h(1)=\frac{1+1}{e^{1}+1}=\frac{2}{e+1}<\frac{2}{2}=1$.]
(c) $y^{2}+10 x=\cos (5 y)$

Differentiating (2) implicitly,

$$
\begin{equation*}
2 y \frac{d y}{d x}+10=-5 \sin (5 y) \frac{d y}{d x} \tag{2}
\end{equation*}
$$

Hence $(2 y+5 \sin (5 y)) \frac{d y}{d x}=-10$
Differentiating (3) implicitly, we get

$$
\begin{align*}
& \quad(2+25 \cos (5 y))\left(\frac{d y}{d x}\right)^{2}+(2 y+5 \sin (5 y)) \frac{d^{2} y}{d x^{2}}=0 \tag{3}\\
& \text { Hence }+\frac{d^{2} y}{d x^{2}}=-\frac{2+25 \cos (5 y)}{2 y+5 \sin (5 y)}\left(\frac{d y}{d x}\right)^{2}=-100 \frac{2+25 \cos (5 y)}{(2 y+5 \sin (5 y))^{3}} .
\end{align*}
$$

5.. $f(x)=\left\{\begin{array}{c}4 x^{3}+3 x^{2}-6 x-1, x \geq 1 \\ 1-\frac{2 x}{1+x^{2}}, x<1\end{array}\right.$.
(a) $\quad f$ is continuous at $x=1$ if and only if $\lim _{x \rightarrow 1} f(x)=f(1)$.

Now $f(1)=4+3-6-1=0, \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 1-\frac{2 x}{1+x^{2}}=1-1=0$ and
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4 x^{3}+3 x^{2}-6 x-1=4+3-6-1=0$ Thus $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
(b) $\quad f^{\prime}(x)=\left\{\begin{array}{c}12 x^{2}+6 x-6, x>1 \\ -\frac{2\left(1+x^{2}\right)-2 x(2 x)}{\left(1+x^{2}\right)^{2}}, x<1\end{array}=\left\{\begin{array}{c}6\left(2 x^{2}+x-1\right), x>1 \\ 2 \frac{x^{2}-1}{\left(1+x^{2}\right)^{2}}, x<1\end{array}\right.\right.$

$$
=\left\{\begin{array}{c}
6(2 x-1)(x+1), x>1 \tag{1}\\
2 \frac{(x-1)(x+1)}{\left(1+x^{2}\right)^{2}}, x<1
\end{array}\right.
$$

From (1) $f^{\prime}(x)=0$ in $(-\infty, 1)$ if and only if $x=-1$ and $f^{\prime}(x) \neq 0$ for x in $(1, \infty)$.
From (1), for $x<-1, f^{\prime}(x)>0($ since $(x-1)<0$ and $(x+1)<0)$ and so f is increasing on $(-\infty,-1]$. Also from (1), for $-1<x<1, f^{\prime}(x)<0($ since $(x-1)<0$ and $(x+1)>0)$ and so f is decreasing on the interval $[-1,1]$. The end points are included by continuity. Finally from $(1), f^{\prime}(x)>0$ in $(1, \infty)$ and so f is increasing on the interval $[1, \infty)$.
(c) From part (b) or by the 1st derivative test,
$f(-1)=2$ is a relative maximum of f and $f(1)=0$ is a relative minimum of f.
(d) $\quad f^{\prime \prime}(x)=\left\{\begin{array}{c}24 x+6, x>1 \\ \frac{4 x\left(3-x^{2}\right)}{\left(1+x^{2}\right)^{3}}, x<1\end{array}\right.$

$$
=\left\{\begin{array}{c}
24 x+6, x>1 \tag{2}\\
-\frac{4 x(x-\sqrt{3})(x+\sqrt{3})}{\left(1+x^{2}\right)^{3}}, x<1
\end{array}\right.
$$

Note that f is not differentiable at $x=1$. This is deduced as follows.
$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{f^{\prime}(x)}{1}=\lim _{x \rightarrow 1^{+}} 6(2 x-1)(x+1)=12$ by L'Hôpital's Rule, and $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(2)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{f^{\prime}(x)}{1}=\lim _{x \rightarrow 1^{-}} 2 \frac{x^{2}-1}{\left(1+x^{2}\right)^{2}}=0$ and so f is not differentiable at $x=1$ since $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \neq \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$.
From (2) for $x<-\sqrt{3}, f^{\prime \prime}(x)>0$ since $x<0, x<\sqrt{3}$ and $x<-\sqrt{3}$ and so the graph of f is concave upward on the interval $(-\infty,-\sqrt{ } 3)$. For $-\sqrt{ } 3<x<0, x+\sqrt{ } 3>0, x<0$ and $x-\sqrt{ } 3$ <0 and so $f^{\prime \prime}(x)=-\frac{4 x(x-\sqrt{3})(x+\sqrt{3})}{\left(1+x^{2}\right)^{3}}<0$ and therefore the graph of f is concave downward on the interval $(-\sqrt{3}, 0)$. For $0<x<1, x+\sqrt{3}>0, x>0$ and $x-\sqrt{3}<0$ and so $f^{\prime \prime}(x)=-\frac{4 x(x-\sqrt{3})(x+\sqrt{3})}{\left(1+x^{2}\right)^{3}}>0$ and the graph of f is concave upward on the interval $(0,1)$. Finally for $x>1$, from (2), $f^{\prime \prime}(x)=24 x+6>0$ and so the graph of f is concave upward on the interval $(1, \infty)$.
(e) From part (d), there is a change of concavity of the graph of f before and after the points x $=-\sqrt{3}$ and $x=0$. Therefore the points of inflection of the graph of f are $(-\sqrt{ } 3, f$ $(-\sqrt{ } 3)=\left(-\sqrt{ } 3,1+\frac{\sqrt{3}}{2}\right)$ and $(0, f(0))=(0,1)$.
(f) The graph of f :

6. (a)
(i) $\quad h(x)=\left(\ln \left(e+x^{2}\right)+e^{x}\right)^{\cot (x)}$

Then $\ln (h(x))=\cot (x) \ln \left(\ln \left(e+x^{2}\right)+e^{x}\right)$
Differentiating on both sides, we obtain
$\frac{1}{h(x)} h^{\prime}(x)=-\csc ^{2}(x) \ln \left(\ln \left(e+x^{2}\right)+e^{x}\right)+\cot (x) \frac{1}{\ln \left(e+x^{2}\right)+e^{x}}\left(\frac{2 x}{e+x^{2}}+e^{x}\right)$
Therefore, $\frac{h^{\prime}(x)}{h(x)}=\frac{\cot (x)\left(2 x+e^{x+1}+x^{2} e^{x}\right)}{\left(e+x^{2}\right)\left(\ln \left(e+x^{2}\right)+e^{x}\right)}-\frac{\ln \left(\ln \left(e+x^{2}\right)+e^{x}\right)}{\sin ^{2}(x)}$.
$h^{\prime}(x)=\left(\frac{\cot (x)\left(2 x+e^{x+1}+x^{2} e^{x}\right)}{\left(e+x^{2}\right)\left(\ln \left(e+x^{2}\right)+e^{x}\right)}-\frac{\ln \left(\ln \left(e+x^{2}\right)+e^{x}\right)}{\sin ^{2}(x)}\right)\left(\ln \left(e+x^{2}\right)+e^{x}\right)^{\cot (x)}$.
(ii) $\quad j(x)=\int_{-x}^{\sin (x)} \frac{t}{2+\sin \left(t^{2}\right)} d t=\int_{0}^{\sin (x)} \frac{t}{2+\sin \left(t^{2}\right)} d t-\int_{0}^{-x} \frac{t}{2+\sin \left(t^{2}\right)} d t$ $=F(\sin (x))-F(-x)$, where $F(x)=\int_{0}^{x} \frac{t}{2+\sin \left(t^{2}\right)} d t$
But, by the Fundamental Theorem of Calculus,

$$
F^{\prime}(x)=\frac{x}{2+\sin \left(x^{2}\right)} .
$$

Therefore, $j^{\prime}(x)=F^{\prime}(\sin (x)) \cos (x)-F^{\prime}(-x)(-1)$ by the Chain Rule

$$
=\frac{\sin (x) \cos (x)}{2+\sin \left(\sin ^{2}(x)\right)}-\frac{x}{2+\sin \left(x^{2}\right)} .
$$

(b) $\quad f(x)=\int_{0}^{x} e^{-t^{2}} d t$
(i) By the Fundamental Theorem of Calculus,

$$
\begin{equation*}
f^{\prime}(x)=e^{-x^{2}}>0 \tag{1}
\end{equation*}
$$

for all x in \mathbf{R}.
Therefore, f is an increasing function on \mathbf{R} and hence is an injective function
Consequently, f has an inverse function f^{-1} with domain $f(\mathbf{R})$.
(ii) $\operatorname{By}(1) f^{\prime}(x) \neq 0$. Therefore,

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f_{0}^{-1}(x)\right)} \tag{2}
\end{equation*}
$$

Now since $f(0)=\int_{0}^{0} e^{-t^{2}} d t=0$ and f is injective, $f^{-1}(0)=0$ and so by (2) and (1)

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{e^{0}}=1 .
$$

(iii) Consider the function $g(x)=e^{x^{2}}-\left(1+x^{2}\right)$. Then g is differentiable on \mathbf{R} and $g^{\prime}(x)=2 x e^{x^{2}}-2 x=2 x\left(e^{x^{2}}-1\right)$. Since $x^{2}>0$ implies that $e^{x^{2}}>e^{0}=1$,

$$
e^{x^{2}}-1>0 \text { for } x \neq 0 .
$$

Therefore, for $x>0, g^{\prime}(x)=2 x\left(e^{x^{2}}-1\right)>0$. Hence g is increasing on the interval $[0, \infty)$ since g is continuous at 0 as well. Thus for any $x>0$, $g(x)>g(0)=e^{0}-(1+0)=0$.
That means for $x \geq 0, e^{x^{2}} \geq\left(1+x^{2}\right)$.

Alternative solution:

$$
\begin{aligned}
& e^{x^{2}} \geq\left(1+x^{2}\right) \Leftrightarrow x^{2} \geq \ln \left(1+x^{2}\right)=\int_{1}^{1+x^{2}} \frac{1}{t} d t-\cdots------ \text { (3) } \\
& \text { Now for } t \geq 1, \frac{1}{t} \leq 1 \text { so that } \int_{1}^{1+x^{2}} \frac{1}{t} d t \leq \int_{1}^{1+x^{2}} 1 d t=x^{2} . \text { Thus } e^{x^{2}} \geq\left(1+x^{2}\right) .
\end{aligned}
$$

Therefore, $\frac{1}{e^{x^{2}}} \leq \frac{1}{1+x^{2}}$. Thus for any $x \geq 0, \int_{0}^{x} \frac{1}{e^{t^{2}}} d t \leq \int_{0}^{x} \frac{1}{1+t^{2}} d t=\tan ^{-1}(x)$.
Hence $f(1)=\int_{0}^{1} \frac{1}{e^{t^{2}}} d t \leq \tan ^{-1}(1)=\frac{\pi}{4}$.
(iv) Since f is an increasing function (by (i)), for $x \leq 1, f(x) \leq f(1)=\pi / 4<1$.

Now for $x>1, f(x)=\int_{0}^{1} e^{-t^{2}} d t+\int_{1}^{x} e^{-t^{2}} d t=f(1)+\int_{1}^{x} e^{-t^{2}} d t \leq \frac{\pi}{4}+\int_{1}^{x} e^{-t^{2}} d t---$ (4)
Now for $t \geq 1, e^{-t^{2}} \leq t e^{-t^{2}}$ and so for $x>1$,
$\int_{1}^{x} e^{-t^{2}} d t \leq \int_{1}^{x} t e^{-t^{2}} d t=\frac{1}{2} \int_{1}^{x} e^{-t^{2}} 2 t d t=\frac{1}{2} \int_{1}^{x} e^{-t^{2}} \frac{d u}{d t} d t$, where $u=t^{2}$

$$
\leq \frac{1}{2} \int_{1}^{x^{2}} e^{-u} d u=\frac{1}{2}\left[-e^{-u}\right]_{1}^{x^{2}}=\frac{1}{2}\left(\frac{1}{e}-\frac{1}{e^{x^{2}}}\right)<\frac{1}{2 e} .
$$

Therefore, by (4) for any $x>1$,

$$
f(x) \leq \frac{\pi}{4}+\frac{1}{2 e}<0.8+0.19<1
$$

Hence for any $x, f(x)<1$.

