NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2003-2004

MA1102R Calculus

November 2003 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** (2) sections: Section A and Section B. It contains a total of **NINE** (9) questions and comprises **FOUR** (4) printed pages.
- 2. Answer **ALL** questions in **Section A**. Each question in Section A carries 10 marks.
- 3. Answer not more than **TWO** (2) questions from **Section B**. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA1102R

SECTION A

Answer all the questions in this section. Section A carries a total of 60 marks.

Question 1. [10 marks]

Evaluate each of the following limits.

- (a) $\lim_{x \to -1} \frac{x + |x|}{1 x^2}$
- (b) $\lim_{x \to \infty} \left(1 + \frac{1}{x} + \frac{1}{x^2} \right)^x$

Question 2. [10 marks]

Let $f(x) = \ln(\ln(2\sin x))$.

- (a) Find the largest subset of \mathbb{R} such that f is defined.
- (b) Find f'(x).

Question 3. [10 marks]

Let C be the curve defined by the equation $x^2 + y^2 = 5x^4$.

- (a) Find $\frac{dy}{dx}$.
- (b) Find an equation of the tangent line to the curve C at the point (1,2).

Question 4. [10 marks]

Evaluate each of the following integrals.

- (a) $\int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx$
- (b) $\int \frac{1}{\sqrt[3]{x} + \sqrt{x}} \, dx$

[For (a), You may leave your answer in terms of e and π .]

PAGE 3 MA1102R

Question 5. [10 marks]

- (a) Evaluate the integral $\int_1^\infty \frac{\ln x}{x^3} dx$
- (b) Using the Mean Value Theorem, or otherwise, prove that for any $x, y \ge 0$,

$$|e^{-x} - e^{-y}| \le |x - y|.$$

Question 6. [10 marks]

- (a) Find $\frac{d}{dx} \int_{\sin x}^{x^2} \frac{1}{1+t^4} dt$.
- (b) Let $f(x) = (1+x)^{\frac{5}{2}}$. Find the Maclaurin polynomial of f of degree 2 with remainder.

SECTION B

Answer not more than **two** questions from this section. Each question in this section carries 20 marks.

Question 7. [20 marks]

(a) Let f be a function such that

$$2x \le f(x) \le x^2 + 1$$
, for all x in $(0, 2)$.

Show that f is differentiable at x = 1 and find f'(1).

(b) Let g be the function defined by

$$g(x) = \begin{cases} 2x & \text{if } x \le 1\\ x^2 + 1 & \text{if } 1 < x \le 2\\ x + 3 & \text{if } 2 < x \end{cases}.$$

Find an anti-derivative of q.

(c) Evaluate $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n^3} \sqrt{i^2(n^2-i^2)}$.

Question 8. [20 marks]

Let
$$f(x) = \frac{2 - 4x}{(2x + 1)^2}$$
.

- (a) Find, if any, the x- and y- intercepts of f.
- (b) Show that f has a critical point at $x = \frac{3}{2}$.
- (c) Find the intervals on which f is (i) increasing, and (ii) decreasing.
- (d) Find, if any, the local minima and local maxima of f.
- (e) Find the intervals on which the graph of f is (i) concave upward, and (ii) concave downward.
- (f) Find, if any, the points of inflection of the graph of f.
- (g) Find, if any, the vertical and horizontal asymptotes of the graph f.
- (h) Sketch the graph of f.

Question 9. [20 marks]

- (a) Let g be a continuous *even* function defined on \mathbb{R} .
 - (i) Prove that

$$\int_0^{\pi} x g(\cos x) \, dx = \frac{\pi}{2} \int_0^{\pi} g(\cos x) \, dx.$$

- (ii) Using (i), or otherwise, evaluate $\int_0^{\pi} x \cos^4 x \, dx$.
- (b) Let f be a twice differentiable function defined on \mathbb{R} satisfying f(0) = 0, f'(0) = 1 and f''(x) > 0 for all x in \mathbb{R} . Define

$$h(x) = \begin{cases} \frac{f(x)}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}.$$

(i) Prove that for any x > 0, there exists a number c in (0, x) such that

$$h'(x) = \frac{f'(x) - f'(c)}{x}.$$

(ii) Show that h is increasing on \mathbb{R} .

END OF PAPER

Solution

Section A

1. (a)
$$\lim_{x \to -1} \frac{x + |x|}{1 - x^2} = \lim_{x \to -1} \frac{x - x}{1 - x^2} = \lim_{x \to -1} 0 = 0.$$

(b) Let
$$y = \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^x = \left(\frac{x^2 + x + 1}{x^2}\right)^x$$
.
Thus $\ln y = x \left(\ln(x^2 + x + 1) - 2\ln x\right) = \frac{\ln(x^2 + x + 1) - 2\ln x}{x^{-1}}$.

$$\lim_{x \to \infty} \ln y$$

$$= \lim_{x \to \infty} \frac{\ln(x^2 + x + 1) - 2\ln x}{x^{-1}}$$

$$= \lim_{x \to \infty} \frac{(2x + 1)(x^2 + x + 1)^{-1} - 2x^{-1}}{-x^{-2}}$$
 by L'Hôpital's rule,
$$= \lim_{x \to \infty} \frac{(-x^2)(x(2x + 1) - 2(x^2 + x + 1))}{x(x^2 + x + 1)}$$

$$= \lim_{x \to \infty} \frac{x^2 + 2x}{x^2 + x + 1}$$

$$= \lim_{x \to \infty} \frac{1 + 2x^{-1}}{1 + x^{-1} + x^{-2}} = 1.$$
 Hence, $\lim_{x \to \infty} y = e$.

2. (a)
$$f(x) = \ln(\ln(2\sin x)) \text{ is defined}$$

$$\iff \ln(2\sin x) > 0$$

$$\iff 2\sin x > 1$$

$$\iff \sin x > \frac{1}{2}$$

$$\iff x \in (\frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi) \text{ for some integer } n.$$
Thus the domain of f is $\bigcup_{n \in \mathbb{Z}} \left(\frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi\right)$.

(b)
$$f'(x) = \frac{1}{\ln(2\sin x)} \frac{1}{2\sin x} 2\cos x = \frac{\cot x}{\ln(2\sin x)}$$
.

3. (a) Differentiating both sides of the equation with respect to x, we have

$$2x + 2yy' = 20x^3.$$

Thus,
$$y' = \frac{10x^3 - x}{y}$$
.

(b) At the point (1,2), $y'(1) = \frac{9}{2}$. Therefore, an equation of the tangent line to the given curve at (1,2) is given by $y-2=\frac{9}{2}(x-1)$, or equivalently, 9x-2y-5=0.

4. (a) Using integration by parts twice, we have

$$\begin{split} & \int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx \\ &= \left[-e^{2x} \cos x \right]_0^{\frac{\pi}{2}} + 2 \int_0^{\frac{\pi}{2}} e^{2x} \cos x \, dx \\ &= 1 + 2 \left[e^{2x} \sin x \right]_0^{\frac{\pi}{2}} - 4 \int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx \\ &= 1 + 2e^{\pi} - 4 \int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx. \end{split}$$
 Therefore,
$$\int_0^{\frac{\pi}{2}} e^{2x} \sin x \, dx = \frac{1 + 2e^{\pi}}{5}.$$

(b) Let $y = x^{\frac{1}{6}}$. Then $x^{\frac{1}{3}} = y^2$, $x^{\frac{1}{2}} = y^3$, and $dy = \frac{1}{6}x^{-\frac{5}{6}}dx$ so that $dx = 6y^5dy$. Thus,

$$\int \frac{1}{\sqrt[3]{x} + \sqrt{x}} dx$$

$$= \int \frac{6y^5}{y^2 + y^3} dy$$

$$= \int \frac{6y^3}{1 + y} dy$$

$$= \int 6y^2 - 6y + 6 - \frac{6}{1 + y} dy$$

$$= 2y^3 - 3y^2 + 6y - 6\ln(1 + y) + C$$

$$= 2x^{\frac{1}{2}} - 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} - 6\ln(1 + x^{\frac{1}{6}}) + C.$$

5. (a) Using integration by parts,

$$\int_{1}^{b} \frac{\ln x}{x^{3}} \, dx = \left[\frac{-\ln x}{2x^{2}} \right]_{1}^{b} + \int_{1}^{b} \frac{1}{2x^{3}} \, dx = -\frac{\ln b}{2b^{2}} + \left[-\frac{1}{4x^{2}} \right]_{1}^{b} = -\frac{\ln b}{2b^{2}} - \frac{1}{4b^{2}} + \frac{1}{4}.$$
Thus,
$$\int_{1}^{\infty} \frac{\ln x}{x^{3}} \, dx = \lim_{b \to \infty} \int_{1}^{b} \frac{\ln x}{x^{3}} \, dx = \lim_{b \to \infty} \left(-\frac{\ln b}{2b^{2}} - \frac{1}{4b^{2}} + \frac{1}{4} \right) = \frac{1}{4},$$
since by L'Hôpital's rule,
$$\lim_{b \to \infty} \frac{\ln b}{2b^{2}} = \lim_{b \to \infty} \frac{\frac{1}{b}}{4b} = \lim_{b \to \infty} \frac{1}{4b^{2}} = 0.$$

(b) The inequality clearly holds when x=y. Let x and y be distinct nonnegative numbers. Without loss of generality, we may suppose $0 \le x < y$. The function $f(t) = e^{-t}$ is continuous on [x,y] and differentiable in (x,y) with $f'(t) = -e^{-t}$. By Mean Value Theorem, we have $e^{-y} - e^{-x} = -e^{-c}(y-x)$ for some c in (x,y). Since c > 0, we have $e^{-c} < 1$. Consequently,

$$|e^{-x} - e^{-y}| = |e^{-c}||x - y| \le |x - y|.$$

6. (a) By Fundamental Theorem of Calculus and the Chain Rule for differentiation, we have

$$\frac{d}{dx} \int_{\sin x}^{x^2} \frac{1}{1+t^4} dt = \frac{1}{1+(x^2)^4} \cdot 2x - \frac{1}{1+\sin^4 x} \cdot \cos x.$$

(b) First $f'(x) = \frac{5}{2}(1+x)^{\frac{3}{2}}$, $f''(x) = \frac{15}{4}(1+x)^{\frac{1}{2}}$, and $f'''(x) = \frac{15}{8}(1+x)^{-\frac{1}{2}}$. Thus f(0) = 1, $\frac{f'(0)}{1!} = \frac{5}{2}$, and $\frac{f''(0)}{2!} = \frac{15}{8}$. Therefore the Maclaurin polynomial of degree 2 is given by

$$1 + \frac{5}{2}x + \frac{15}{8}x^2,$$

and the remainder is $R_2(x) = \frac{5}{16}(1+c)^{-\frac{1}{2}}x^3$, where c is between 0 and x.

Section B

7. (a) Substituting x = 1 into the given inequality, we get f(1) = 2. Therefore,

$$2x - 2 \le f(x) - f(1) \le x^2 - 1$$
 for all x in $(0, 2)$.

For 0 < x < 1, we have

$$\frac{2x-2}{x-1} \ge \frac{f(x)-f(1)}{x-1} \ge \frac{x^2-1}{x-1},$$

or equivalently,

$$2 \ge \frac{f(x) - f(1)}{x - 1} \ge x + 1.$$

Thus, by Squeeze Theorem, $\lim_{x\to 1^-} \frac{f(x)-f(1)}{x-1}=2$.

Similarly, for 1 < x < 2, we have $2 \le \frac{f(x) - f(1)}{x - 1} \le x + 1$. Again by Squeeze Theorem, $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = 2$. Consequently, $f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 2$.

(b) Note that g is continuous on \mathbb{R} . By Fundamental Theorem of Calculus, $F(x) = \int_0^x f(t) dt$ is an anti-derivative of f.

For
$$x \leq 1$$
, $\int_0^x f(t) dt = \int_0^x 2t dt = x^2$. In particular $\int_0^1 f(t) dt = 1$.

For
$$1 \le x \le 2$$
, $\int_0^x f(t) dt = \int_0^1 f(t) dt + \int_1^x f(t) dt$

$$= 1 + \int_1^x (t^2 + 1) dt$$

$$= 1 + \frac{1}{3}x^3 + x - \frac{4}{3}$$

$$= \frac{1}{3}x^3 + x - \frac{1}{3}.$$

In particular
$$\int_0^2 f(t) dt = \frac{13}{3}$$
.

For
$$2 \le x$$
, $\int_0^x f(t) dt = \int_0^2 f(t) dt + \int_2^x f(t) dt$
= $\frac{13}{3} + \int_2^x (t+3) dt$
= $\frac{1}{2}x^2 + 3x - \frac{11}{3}$.

Therefore,

$$F(x) = \begin{cases} x^2 & \text{if } x \le 1\\ \frac{1}{3}x^3 + x - \frac{1}{3} & \text{if } 1 < x \le 2\\ \frac{1}{2}x^2 + 3x - \frac{11}{3} & \text{if } 2 < x \end{cases}.$$

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n^3} \sqrt{i^2 (n^2 - i^2)} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n} \sqrt{1 - \frac{i^2}{n^2}} \frac{1}{n}$$
$$= \int_0^1 x \sqrt{1 - x^2} \, dx = \left[-\frac{1}{3} (1 - x^2)^{\frac{3}{2}} \right]_0^1 = \frac{1}{3}.$$

8. Note that the domain of f is $\mathbb{R} \setminus \{-\frac{1}{2}\}$. Since f is a rational function, it is differentiable at each point in its domain. Let's first compute f'(x) and f''(x). We have

$$f'(x) = \frac{4(2x-3)}{(2x+1)^3}$$
 and $f''(x) = -\frac{16(2x-5)}{(2x+1)^4}$.

- (a) When x = 0, y = f(0) = 2, and when y = 0, $x = \frac{1}{2}$. Thus, the x-intercept is $\frac{1}{2}$ and the y-intercept is 2.
- (b) $f'(x) = \frac{4(2x-3)}{(2x+1)^3} = 0$ if and only if $x = \frac{3}{2}$. Therefore, f has a critical point at $x = \frac{3}{2}$.
- (c) From the expression of f'(x), we see that f'(x) > 0 for x in $(-\infty, -\frac{1}{2}) \cup (\frac{3}{2}, \infty)$ and f'(x) < 0 for x in $(-\frac{1}{2}, \frac{3}{2})$. Therefore, f is decreasing on $(-\frac{1}{2}, \frac{3}{2}]$ and is increasing on $(-\infty, -\frac{1}{2}) \cup [\frac{3}{2}, \infty)$.
- (d) By the first derivative test, f has a local minimum at $x = \frac{3}{2}$ and $f(\frac{3}{2}) = -\frac{1}{4}$.
- (e) From the expression of f''(x), we see that f''(x) < 0 for $x > \frac{5}{2}$ and f''(x) > 0 for $x < \frac{5}{2}$ and $x \neq -\frac{1}{2}$.

 Thus the graph of f is concave downward in $(\frac{5}{2}, \infty)$ and concave upward in $(-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, \frac{5}{2})$.
- (f) Setting f''(x) = 0, we see that f''(x) = 0 if and only if $x = \frac{5}{2}$. From (e), the graph of f is concave upward in $(-\frac{1}{2}, \frac{5}{2})$ and concave downward in $(\frac{5}{2}, \infty)$. So

there is a change of concavity of the graph of f at $x = \frac{5}{2}$. Consequently, there is a point of inflection of the graph of f at $x = \frac{5}{2}$.

(g) $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{2-4x}{(2x+1)^2} = \lim_{x\to\infty} \frac{\frac{2}{x^2}-\frac{4}{x}}{(2+\frac{1}{x})^2} = 0$. Similarly, $\lim_{x\to-\infty} f(x) = 0$. Therefore, y=0 is a horizontal asymptote of the graph of f.

Also $\lim_{x\to -\frac{1}{2}}f(x)=\lim_{x\to -\frac{1}{2}}\frac{2-4x}{(2x+1)^2}=\infty.$ Thus $x=-\frac{1}{2}$ is a vertical asymptote of the graph of f.

(h) The graph of f is shown below.

The graph of $f(x) = (2 - 4x)(2x + 1)^{-2}$

9. (a) (i) Using the substitution $x = \pi - t$, we have

$$\int_0^\pi x g(\cos x) \, dx = \int_{\pi}^0 (\pi - t) g(\cos(\pi - t)) \, (-dt)$$

$$= \int_0^\pi (\pi - t) g(-\cos t) \, dt$$

$$= \int_0^\pi (\pi - t) g(\cos t) \, dt \quad \text{since } g \text{ is an even function}$$

$$= \pi \int_0^\pi g(\cos t) \, dt - \int_0^\pi t g(\cos t) \, dt$$

Consequently,

$$\int_0^{\pi} xg(\cos x) dx = \frac{\pi}{2} \int_0^{\pi} g(\cos x) dx.$$

(ii) First, we have $\cos^4(x) = \left[\frac{1}{2}(1+\cos(2x))\right]^2 = \frac{1}{4}(1+2\cos(2x)+\cos^2(2x)) = \frac{1}{4}(1+2\cos(2x)+\frac{1}{2}(1+\cos(4x))) = \frac{1}{8}(3+4\cos(2x)+\cos(4x)).$

Thus by (i),
$$\int_0^{\pi} x \cos^4 x \, dx = \frac{\pi}{2} \int_0^{\pi} \cos^4 x \, dx$$

$$= \frac{\pi}{16} \int_0^{\pi} 3 + 4\cos(2x) + \cos(4x) dx$$
$$= \frac{\pi}{16} \left[3x + 2\sin(2x) + \frac{1}{4}\sin(4x) \right]_0^{\pi}$$
$$= \frac{3\pi^2}{16}.$$

(b) (i) Let x > 0. By Mean Value Theorem, there exists c in (0, x) such that f(x) = f(x) - f(0) = f'(c)x. Thus

$$h'(x) = \frac{f'(x)x - f(x)}{x^2} = \frac{f'(x)x - f'(c)x}{x^2} = \frac{f'(x) - f'(c)}{x}.$$

(ii) Since f''(x) > 0 for all x > 0, f'(x) is increasing on $(0, \infty)$. Thus $h'(x) = \frac{f'(x) - f'(c)}{x} > 0$ as x > c. Therefore, h is increasing on $(0, \infty)$. Similarly, for x < 0, we have

$$h'(x) = \frac{f'(x)x - f(x)}{x^2} = \frac{f'(x)x - f'(c)x}{x^2} = \frac{f'(x) - f'(c)}{x} > 0,$$

where c is in (x,0). Therefore, h is increasing on $(-\infty,0)$.

Note that $\lim_{x\to 0} h(x) = \lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = f'(0) = 1 = h(0)$, so that h is continuous at x=0. Thus, h is increasing on \mathbb{R} .

Remark An example of such a function f is $f(x) = e^x - 1$.