# NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE

#### SEMESTER 1 EXAMINATION 2003-2004

#### MA1102R Calculus

April 2004 — Time allowed: 2 hours

#### INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** (2) sections: Section A and Section B. It contains a total of **NINE** (9) questions and comprises **FOUR** (4) printed pages.
- 2. Answer **ALL** questions in **Section A**. Each question in Section A carries 10 marks.
- 3. Answer not more than **TWO** (2) questions from **Section B**. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

PAGE 2 MA1102R

#### **SECTION A**

Answer all the questions in this section. Section A carries a total of 60 marks.

#### Question 1. [10 marks]

Evaluate the following limits.

- (a)  $\lim_{x \to 0^+} x^x$ ,
- (b)  $\lim_{x \to \pi} \frac{\cos x + |\cos x|}{(\pi x)^2}$ .

## Question 2. [10 marks]

Using the  $\epsilon - \delta$  definition of the limit, show that  $\lim_{x \to 1} (3 - 2x) = 1$ .

## Question 3. [10 marks]

Let C be the curve with equation  $x^2 + y^2 = y^3$ .

- (a) Find an equation of the tangent line to the curve C at the point (2,2).
- (b) Find  $\frac{d^2y}{dx^2}$  at the point (2,2).

## Question 4. [10 marks]

Let 
$$f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x^2 \sin \frac{1}{x} & \text{if } x > 0 \end{cases}$$
.

- (a) Show that f is continuous at x = 0.
- (b) Find f'(x).

## Question 5. [10 marks]

Find the area of the region bounded by the curve  $y = \ln x$  and the line joining the points (1,0) and  $(e^2,2)$ .

PAGE 3 MA1102R

#### Question 6. [10 marks]

Evaluate the following integrals.

(a) 
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
,

(b) 
$$\int \frac{x^2 + x}{(x^2 + 1)(x - 1)} dx$$
.

#### **SECTION B**

Answer not more than **two** questions from this section. Each question in this section carries 20 marks.

## Question 7. [20 marks]

(a) Let  $g(x) = x + \arcsin x$ . Find the third degree Maclaurin polynomial of g(x).

(b) Let 
$$f:[0,\frac{\pi}{2})\longrightarrow \mathbb{R}$$
 be defined by  $f(x)=\int_{-\frac{\pi}{6}}^{x}\tan^{3}t\,dt.$ 

- (i) Show that f is increasing on  $[0, \frac{\pi}{2})$ .
- (ii) Find  $(f^{-1})'(0)$ .
- (iii) Determine the minimum value of f on  $[0, \frac{\pi}{2})$ .

## Question 8. [20 marks]

Let 
$$f(x) = \frac{x^2 + x + 7}{(2x+1)^{\frac{1}{2}}}$$
.

- (a) Find, if any, the x- and y- intercepts of f.
- (b) Show that f has a critical point at x = 1.
- (c) Find the intervals on which f is (i) increasing, and (ii) decreasing.
- (d) Find, if any, the local minima and local maxima of f.
- (e) Find, if any, the intervals on which the graph of f is (i) concave upward, and (ii) concave downward.
- (f) Find, if any, the points of inflection of the graph of f.
- (g) Find, if any, the vertical and horizontal asymptotes of the graph f.

...-4-

PAGE 4 MA1102R

- (h) Determine the range of f.
- (i) Sketch the graph of f. Indicate clearly the local extrema and points of inflection, if any, on the graph of f.

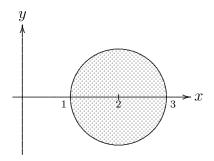
## Question 9. [20 marks]

(a) Determine whether the improper integral

$$\int_2^\infty \frac{1}{x(\ln x)^3} \, dx$$

is convergent or not. Find its value if it is convergent.

(b) Find the volume of the solid obtained by revolving the circular disk bounded by the circle  $(x-2)^2 + y^2 = 1$  about the y-axis.



(c) Let f be a twice differentiable function defined on  $\mathbb{R}$  such that f''(x) > 0 for all x in (a,b). Suppose that f(a) = f(b) = 0. Show that f(x) < 0 for all x in (a,b).

#### END OF PAPER

PAGE 5 MA1102R

#### Section A

1. (a) Let  $y = x^x$ . Then  $\ln y = x \ln x$ . Thus  $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = \lim_{x \to 0^+} \frac{x^{-1}}{-x^{-2}} = \lim_{x \to 0^+} -x = 0$  by L'Hôpital's Rule. Therefore,  $\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln y} = e^0 = 1$ .

- (b) For  $x \in (\frac{\pi}{2}, \frac{3\pi}{2}) \setminus \{\pi\}$ , we have  $\cos x < 0$  so that  $\frac{\cos x + |\cos x|}{(\pi x)^2} = \frac{\cos x \cos x}{(\pi x)^2} = 0$ . Thus,  $\lim_{x \to \pi} \frac{\cos x + |\cos x|}{(\pi - x)^2} = \lim_{x \to \pi} 0 = 0$ .
- 2. Given  $\epsilon > 0$ . Choose  $\delta = \frac{\epsilon}{2}$ . Thus if  $0 < |x-1| < \delta$ , then  $|(3-2x)-1| = |2-2x| = 2|x-1| < 2\delta = 2 \times \frac{\epsilon}{2} = \epsilon$ . Therefore  $\lim_{x \to 1} (3-2x) = 1$ .
- 3. (a) By implicit differentiation, we have  $2x+2yy'=3y^2y'$ . Thus at the point (2,2), we have  $2(2)+2(2)y'=3(2^2)y'$  so that  $y'=\frac{1}{2}$ . Therefore, an equation of the tangent line to the curve C at the point (2,2) is given by  $y-2=\frac{1}{2}(x-2)$ , or equivalently, 2y=x+2.
  - (b) Differentiating both sides of  $2x + 2yy' = 3y^2y'$  with respect to x, we have  $2 + 2(y')^2 + 2yy'' = 6y(y')^2 + 3y^2y''$ . At the point (2, 2), we have

$$2 + 2(\frac{1}{2})^2 + 2(2)y'' = 6(2)(\frac{1}{2})^2 + 3(2)^2y''.$$

Solving for y'', we obtain  $y'' = -\frac{1}{16}$  at the point (2,2).

4. (a) Clearly,  $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} 0 = 0$ . As  $-x^2 \le x^2 \sin\frac{1}{x} \le x^2$  for all  $x\ne 0$  and  $\lim_{x\to 0^+} -x^2 = 0$  and  $\lim_{x\to 0^+} x^2 = 0$ , we have by squeeze theorem that

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 \sin \frac{1}{x} = 0.$$

Consequently,  $\lim_{x\to 0} f(x) = 0 = f(0)$  and f is continuous at x = 0.

(b) f is clearly differentiable at any point  $x \neq 0$ . Let's find f'(0).

First 
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{0 - 0}{x - 0} = 0.$$

Next we need to compute  $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0^+} x \sin \frac{1}{x}$ .

Note that  $-|x| \le x \sin \frac{1}{x} \le |x|$  for all  $x \ne 0$ . As  $\lim_{x \to 0^+} -|x| = 0$  and  $\lim_{x \to 0^+} |x| = 0$ ,

we have  $\lim_{x\to 0^+} x \sin \frac{1}{x} = 0$  by squeeze theorem. Thus

PAGE 6 MA1102R

$$f'(0) = 0$$
. Consequently,  $f'(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{if } x > 0 \end{cases}$ 

5. Note that the points A(1,0) and  $B(e^2,2)$  lie on the curve  $y=\ln x$ . An equation of the line joining the points A(1,0) and  $B(e^2,2)$  is  $y=2(x-1)/(e^2-1)$ . Thus the area between the curve  $y=\ln x$  and the line AB is

$$\int_{1}^{e^{2}} \ln x - \frac{2(x-1)}{(e^{2}-1)} dx = \left[ x \ln x - x - \frac{(x^{2}-2x)}{(e^{2}-1)} \right]_{1}^{e^{2}} = 2e^{2} - e^{2} + 1 - \frac{e^{4}-2e^{2}+1}{(e^{2}-1)}$$
$$= e^{2} + 1 - (e^{2}-1) = 2.$$

- 6. (a)  $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int 2e^{\sqrt{x}} d(\sqrt{x}) = 2e^{\sqrt{x}} + C.$ 
  - (b)  $\int \frac{x^2 + x}{(x^2 + 1)(x 1)} dx = \int \frac{1}{x^2 + 1} + \frac{1}{x 1} dx = \tan^{-1} x + \ln|x 1| + C.$
- 7. (a) Given  $g(x) = x + \arcsin x$ . Then  $g'(x) = 1 + (1 x^2)^{-\frac{1}{2}}$ ,  $g''(x) = x(1 x^2)^{-\frac{3}{2}}$  and  $g'''(x) = (1 x^2)^{-\frac{3}{2}} + 3x^2(1 x^2)^{-\frac{5}{2}} = (1 + 2x^2)(1 x^2)^{-\frac{5}{2}}$ . Thus g(0) = 0, g'(0) = 2, g''(0) = 0 and g'''(0) = 1. Consequently, the third degree Maclaurin polynomial of g(x) is

$$0 + \frac{2}{1!}x + \frac{0}{2!}x^2 + \frac{1}{3!}x^3 = 2x + \frac{1}{6}x^3.$$

- (b) (i) Given  $f(x) = \int_{-\frac{\pi}{6}}^{x} \tan^{3}t \, dt$ , with  $0 \le x < \frac{\pi}{2}$ . By Fundamental Theorem of Calculus,  $f'(x) = \tan^{3}(x) > 0$ , for  $x \in (0, \frac{\pi}{2})$ . Hence f is (strictly) increasing on  $[0, \frac{\pi}{2})$ .
  - (ii) Since  $\tan^3 x$  is an odd function on  $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ , we have  $f(\frac{\pi}{6}) = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \tan^3 t \, dt = 0$ . Therefore,  $(f^{-1})'(0) = \frac{1}{f'(\frac{\pi}{6})} = \frac{1}{\tan^3(\frac{\pi}{6})} = 3\sqrt{3}$ .
  - (iii) Since f is increasing on  $[0, \frac{\pi}{2})$ , it attains its minimum value at x = 0.

Thus, Minimum value = 
$$f(0) = \int_{-\frac{\pi}{6}}^{0} \tan^{3} t \, dt = \int_{-\frac{\pi}{6}}^{0} (\sec^{2} t - 1) \tan t \, dt$$
  
=  $\int_{-\frac{\pi}{6}}^{0} \sec^{2} t \tan t \, dt - \int_{-\frac{\pi}{6}}^{0} \tan t \, dt$   
=  $\left[\frac{1}{2} \tan^{2} t\right]_{-\frac{\pi}{6}}^{0} - \left[\ln|\sec t|\right]_{-\frac{\pi}{6}}^{0}$   
=  $-\frac{1}{6} - \ln \frac{\sqrt{3}}{2}$ .

PAGE 7 MA1102R

8. Note that the domain of f is  $\left(-\frac{1}{2},\infty\right)$ . f is clearly differentiable and twice differentiable at each point in its domain. Let's first compute f'(x) and f''(x). We have

$$f'(x) = \frac{3(x+2)(x-1)}{(2x+1)^{\frac{3}{2}}}$$
 and  $f''(x) = \frac{3(x^2+x+7)}{(2x+1)^{\frac{5}{2}}}$ .

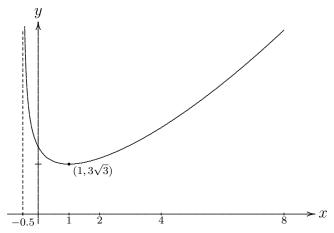
- (a) When x = 0, y = f(0) = 7 so that y-intercept is 7. As  $x^2 + x + 7 = (x \frac{1}{2})^2 + \frac{27}{4}$  is always positive, there is no solution for f(x) = 0 and thus no x-intercept.
- (b) Note that for  $x > -\frac{1}{2}$ ,  $f'(x) = \frac{3(x+2)(x-1)}{(2x+1)^{\frac{3}{2}}} = 0$  if and only if x = 1. Therefore, f has a critical point at x = 1.
- (c) From the expression of f'(x), we see that f'(x) > 0 for x in  $(1, \infty)$  and f'(x) < 0 for x in  $(-\frac{1}{2}, 1)$ . Therefore, f is decreasing on  $(-\frac{1}{2}, 1]$  and is increasing on  $[1, \infty)$ .
- (d) By the first derivative test, f has a local minimum at x = 1 and  $f(1) = \frac{9}{\sqrt{3}} = 3\sqrt{3}$ .
- (e) From the expression of f''(x), we see that f''(x) > 0 for all  $x > -\frac{1}{2}$  because  $x^2 + x + 7$  is always positive. Thus the graph of f is concave upward in  $(-\frac{1}{2}, \infty)$ .
- (f) As f is twice differentiable at each point in its domain and f''(x) is never zero, there is no inflection point of the graph of f.
- (g) Since  $f(x) = \frac{x^2 + x + 7}{(2x+1)^{\frac{1}{2}}} > x^2 + x + 7$  for x > 0, and  $\lim_{x \to \infty} x^2 + x + 7 = \infty$ , we have  $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 + x + 7}{(2x+1)^{\frac{1}{2}}} = \infty$ . Therefore, there is no horizontal asymptote of the graph of f.

On the other hand,  $\lim_{x \to -\frac{1}{2}^+} f(x) = \lim_{x \to -\frac{1}{2}^+} \frac{x^2 + x + 7}{(2x+1)^{\frac{1}{2}}} = \infty$ . Thus  $x = -\frac{1}{2}$  is a vertical asymptote of the graph of f.

- (h) By (c), we know that f attains its absolute minimum value  $3\sqrt{3}$  at x=1. Moreover f is continuous in  $(-\frac{1}{2},\infty)$  with  $\lim_{x\to\infty} f(x)=\infty$ . Thus we conclude that the range of f is  $[3\sqrt{3},\infty)$ .
- (i) The graph of f is shown below.

PAGE 8

MA1102R



The graph of  $f(x) = (x^2 + x + 7)/\sqrt{2x + 1}$ 

9. (a) 
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{3}} dx = \lim_{b \to \infty} \left[ -\frac{1}{2(\ln x)^{2}} \right]_{2}^{b}$$
$$= \lim_{b \to \infty} \left[ -\frac{1}{2(\ln b)^{2}} + \frac{1}{2(\ln 2)^{2}} \right] = \frac{1}{2(\ln 2)^{2}}.$$

(b) The solid generated is a solid torus. The upper semi-circle has equation  $y = \sqrt{1 - (x - 2)^2}$ . Using the Shell Method, we have

Volume = 
$$2 \times 2\pi \int_{1}^{3} x \sqrt{1 - (x - 2)^{2}} dx$$
  
=  $4\pi \int_{-1}^{1} (t + 2) \sqrt{1 - t^{2}} dt$  using a substitution  $t = x - 2$ .  
=  $4\pi \int_{-1}^{1} t \sqrt{1 - t^{2}} dt + 8\pi \int_{-1}^{1} \sqrt{1 - t^{2}} dt$   
=  $-\frac{4\pi}{3} \left[ (1 - t^{2})^{\frac{3}{2}} \right]_{-1}^{1} + 8\pi \times \text{area of the semi-circle of radius 1}$   
=  $-\frac{4\pi}{3} \times 0 + 8\pi \times \frac{\pi}{2} = 4\pi^{2}$ .

(c) By Rolles' Theorem, there exists  $c \in (a, b)$  such that f'(c) = 0. Since f''(x) > 0, we have f'(x) is increasing on [a, b]. Thus, f'(x) < 0 for all  $x \in [a, c)$  and f'(x) > 0 for all  $x \in (c, b]$ . Therefore, f is decreasing on [a, c] and increasing on [c, b]. As f(a) = f(b) = 0, we must have f(x) < 0 for all  $x \in (a, b)$ .